Review
BibTex RIS Cite
Year 2020, Volume: 2 Issue: 2, 171 - 182, 26.08.2020

Abstract

References

  • 1. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342(18):1301-8.
  • 2. Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med 2000;21(3):435-66.
  • 3. Pelosi P, D'Onofrio D, Chiumello D, Paolo S, Chiara G, Capelozzi VL, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J 2003;Suppl42:48s-56s.
  • 4. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016;315(8):788-800.
  • 5. Xu Z, Shi L, Wang Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; DOI: 10.1016/S2213-2600(20)30076.
  • 6. Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through post-mortem core biopsies. Mod Pathol. 2020 Jun;33(6):1007-17. doi:10.1038/s41379-020-0536-x.
  • 7. Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA, et al. Tissue Plasminogen Activator (tPA) Treatment for COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS): A Case Series. J Thromb Haemost. 2020 Jul;18(7):1752-5. doi:10.1111/jth.14828.
  • 8. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020 Mar 13;e200994. doi:10.1001/jamainternmed.2020.0994.
  • 9. Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA 2020 Apr 24. doi: 10.1001/jama.2020.6825. Online ahead of print. PMID: 32329799.
  • 10. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. COVID-19 Lombardy ICU Network. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020 Apr;323(16):1574-81. doi:10.1001/jama.2020.5394.
  • 11. Arentz M, YimE, Klaff L, Lokhandwala S, Riero F, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020 Mar;323(16):1612-4. doi:10.1001/jama.2020.4326.
  • 12. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 Jun;46(6):1099-1102. doi:10.1007/s00134-020-06033-2.
  • 13. Gattinoni L, Chiumello D, Rossi S. COVID-19 Pneumonia: ARDS or Not? Crit Care. 2020;24(1):154. doi:10.1186/s13054-020-02880-z.
  • 14. de Prost N, Ricard JD, Saumon G, Dreyfuss D. Ventilator-induced lung injury: historical perspectives and clinical implications. Ann Intensive Care 2011;1(1):28. doi:10.1186/2110-5820-1-28.
  • 15. Gattinoni L, Quintel M, Marini JJ. “Less is More” in mechanical ventilation. Intensive Care Med 2020;1-3.
  • 16. Panwar R, Hardie M, Bellomo R, Barrot L, Eastwood GM, Young PJ, et al. Conservative versus Liberal Oxygenation Targets for Mechanically Ventilated Patients. A Pilot Multicenter Randomized Controlled Trial. Am J Respir Crit Care Med. 2016;193(1):43-51. doi:10.1164/rccm.201505-1019OC.
  • 17. Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Peñuelas O, Abraira V, et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013;188(2):220-30. doi:10.1164/rccm.201212-2169OC.
  • 18. Rittayamai N, Katsios CM, Beloncle F, Friedrich JO, Mancebo J, Brochard L. Pressure-Controlled vs Volume-Controlled Ventilation in Acute Respiratory Failure: A Physiology-Based Narrative and Systematic Review. Chest 2015;148(2):340-55. doi:10.1378/chest.14-3169.
  • 19. Laffey JG, Honan D, Hopkins N, Hyvelin JM, Boylan JF, McLoughlin P. Hypercapnic acidosis attenuates endotoxin-induced acute lung injury. Am J Respir Crit Care Med. 2004;169(1):46-56. doi:10.1164/rccm.200205-394OC.
  • 20. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, et al. Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646-55. doi:10.1001/jama.299.6.646.
  • 21. Grasso S, Stripoli T, De Michele M, Bruno F, Moschetta M, Angelelli G, et al. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med. 2007;176(8):761-7. doi:10.1164/rccm.200702-193OC.
  • 22. Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42(2):252-64. doi:10.1097/CCM.0b013e3182a6384f.
  • 23. Putensen C, Theuerkauf N, Zinserling J. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Annal Intern Med. 2009;151(8): 566-76.
  • 24. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438-442. doi:10.1164/rccm.201605-1081CP.
  • 25. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16. doi:10.1056/NEJMoa1005372.
  • 26. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183(3):364-71. doi:10.1164/rccm.201004-0670OC.
  • 27. Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, Von Spiegel T, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164(1):43-9. doi:10.1164/ajrccm.164.1.2001078.
  • 28. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5(12):1433-6. doi:10.1038/71012.
  • 29. Tobin MJ, Jubran A, Laghi F. Patient–ventilator interaction. Am J Respir Crit Care Med. 2001;163(5):1059-63.
  • 30. de Wit M, Pedram S, Best AM. Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care 2009;24(1):74-80.
  • 31. Nin N, Muriel A, Peñuelas O, Brochard L, Lorente JA, Ferguson ND, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. 2017;43(2):200-8. doi:10.1007/s00134-016-4611-1.
  • 32. Marcy TW, Marini JJ. Inverse ratio ventilation in ARDS: rationale and implementation. Chest 1991;100(2):494-504.
  • 33. Aoyama H, Uchida K, Aoyama K. Assessment of Therapeutic Interventions and Lung Protective Ventilation in Patients With Moderate to Severe Acute Respiratory Distress Syndrome: A Systematic Review and Network Meta-analysis. JAMA Netw Open 2019;2(7):e198116. doi:10.1001/jamanetworkopen.2019.8116.
  • 34. Kallet RH. A comprehensive review of prone position in ARDS. Respir Care 2015;60(11): 1660-87.
  • 35. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-68.
  • 36. Guérin C. Prone position. Curr Opin Crit Care 2014;20:92-7.
  • 37. Telias I, Katira BH, Brochard L. Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19? JAMA. 2020 May 15. Online ahead of print.
  • 38. Brogan TV, Lequier L, Lorusso R, MacLaren G, Peek G. Extracorporeal life support: The ELSO Red Book. 5th ed. 2017.
  • 39. Kulkarni T, Sharma NS, Diaz-Guzman E. Extracorporeal membrane oxygenation in adults: A practical guide for internists. Cleve Clin J Med. 2016; 83 (5): 373-384.
  • 40. Lequier L, Horton SB, McMullan DM, Bartlett RH. Extracorporeal membrane oxygenation circuitry. Pediatr Crit Care Med. 2013;5(1):7-12.
  • 41. Bayar MK, Kosovalı DB. Ekstrakorporeal Membran Oksijenizasyonu. Güncel Göğüs Hastalıkları Serisi 2018:6(1):93-103.
  • 42. Thiagarajan RR, Barbaro RP, Rycus PT, McMullan DM, Conrad SA, Fortenberry JD, et al. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63(1):60-7.
  • 43. Karagiannidis C, Brodie D, Strassmann S, Stoelben E, Philipp A, Bein T, et al. Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med. 2016;42(5):889-96.

VENTILATORY MANAGEMENT STRATEGIES FOR ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) DUE TO COVID-19 DISEASE

Year 2020, Volume: 2 Issue: 2, 171 - 182, 26.08.2020

Abstract

Acute Respiratory Distress Syndrome (ARDS) is a life-threatening diffuse inflammatory condition in the lungs and result in the oxygen treatment-refractory hypoxemic respiratory failure. ARDS is not a disease and is the result or complication of an underlying disease. COVID-19 pneumonia-related ARDS is a specific condition with unique phenotypes. Although patients had very severe hypoxemia in the early stages of respiratory distress due to COVID-19 disease, there was relatively well-preserved lung compliance. This phenotype is named as “atypical ARDS” or “ARDS type L”. In advanced stage, some patients (20-30%) can return to a clinical picture more characteristic of typical ARDS progressively. This phenotype is called "typical ARDS" or "ARDS type H". Different types of ARDS that develop due to COVID-19 pneumonia require different ventilation strategies, depending on the underlying pathophysiology. In patients with early-stage atypical ARDS phenotype higher TVs and lower PEEP may be preferred, as opposed to the lung protective mechanical ventilator strategy. Nowadays, in the typical ARDS phenotype, the lung protective ventilation strategy used in classical ARDS is widely preferred. Refractory patients (a small number of patients) need to additional applications which are including prone ventilation and exorcoral membrane oxygenation (ECMO).

References

  • 1. Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342(18):1301-8.
  • 2. Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med 2000;21(3):435-66.
  • 3. Pelosi P, D'Onofrio D, Chiumello D, Paolo S, Chiara G, Capelozzi VL, et al. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J 2003;Suppl42:48s-56s.
  • 4. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016;315(8):788-800.
  • 5. Xu Z, Shi L, Wang Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; DOI: 10.1016/S2213-2600(20)30076.
  • 6. Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through post-mortem core biopsies. Mod Pathol. 2020 Jun;33(6):1007-17. doi:10.1038/s41379-020-0536-x.
  • 7. Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA, et al. Tissue Plasminogen Activator (tPA) Treatment for COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS): A Case Series. J Thromb Haemost. 2020 Jul;18(7):1752-5. doi:10.1111/jth.14828.
  • 8. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020 Mar 13;e200994. doi:10.1001/jamainternmed.2020.0994.
  • 9. Marini JJ, Gattinoni L. Management of COVID-19 Respiratory Distress. JAMA 2020 Apr 24. doi: 10.1001/jama.2020.6825. Online ahead of print. PMID: 32329799.
  • 10. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. COVID-19 Lombardy ICU Network. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020 Apr;323(16):1574-81. doi:10.1001/jama.2020.5394.
  • 11. Arentz M, YimE, Klaff L, Lokhandwala S, Riero F, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020 Mar;323(16):1612-4. doi:10.1001/jama.2020.4326.
  • 12. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 Jun;46(6):1099-1102. doi:10.1007/s00134-020-06033-2.
  • 13. Gattinoni L, Chiumello D, Rossi S. COVID-19 Pneumonia: ARDS or Not? Crit Care. 2020;24(1):154. doi:10.1186/s13054-020-02880-z.
  • 14. de Prost N, Ricard JD, Saumon G, Dreyfuss D. Ventilator-induced lung injury: historical perspectives and clinical implications. Ann Intensive Care 2011;1(1):28. doi:10.1186/2110-5820-1-28.
  • 15. Gattinoni L, Quintel M, Marini JJ. “Less is More” in mechanical ventilation. Intensive Care Med 2020;1-3.
  • 16. Panwar R, Hardie M, Bellomo R, Barrot L, Eastwood GM, Young PJ, et al. Conservative versus Liberal Oxygenation Targets for Mechanically Ventilated Patients. A Pilot Multicenter Randomized Controlled Trial. Am J Respir Crit Care Med. 2016;193(1):43-51. doi:10.1164/rccm.201505-1019OC.
  • 17. Esteban A, Frutos-Vivar F, Muriel A, Ferguson ND, Peñuelas O, Abraira V, et al. Evolution of mortality over time in patients receiving mechanical ventilation. Am J Respir Crit Care Med. 2013;188(2):220-30. doi:10.1164/rccm.201212-2169OC.
  • 18. Rittayamai N, Katsios CM, Beloncle F, Friedrich JO, Mancebo J, Brochard L. Pressure-Controlled vs Volume-Controlled Ventilation in Acute Respiratory Failure: A Physiology-Based Narrative and Systematic Review. Chest 2015;148(2):340-55. doi:10.1378/chest.14-3169.
  • 19. Laffey JG, Honan D, Hopkins N, Hyvelin JM, Boylan JF, McLoughlin P. Hypercapnic acidosis attenuates endotoxin-induced acute lung injury. Am J Respir Crit Care Med. 2004;169(1):46-56. doi:10.1164/rccm.200205-394OC.
  • 20. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL, et al. Expiratory Pressure (Express) Study Group. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):646-55. doi:10.1001/jama.299.6.646.
  • 21. Grasso S, Stripoli T, De Michele M, Bruno F, Moschetta M, Angelelli G, et al. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med. 2007;176(8):761-7. doi:10.1164/rccm.200702-193OC.
  • 22. Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, et al. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42(2):252-64. doi:10.1097/CCM.0b013e3182a6384f.
  • 23. Putensen C, Theuerkauf N, Zinserling J. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Annal Intern Med. 2009;151(8): 566-76.
  • 24. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438-442. doi:10.1164/rccm.201605-1081CP.
  • 25. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107-16. doi:10.1056/NEJMoa1005372.
  • 26. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, et al. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183(3):364-71. doi:10.1164/rccm.201004-0670OC.
  • 27. Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, Von Spiegel T, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164(1):43-9. doi:10.1164/ajrccm.164.1.2001078.
  • 28. Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5(12):1433-6. doi:10.1038/71012.
  • 29. Tobin MJ, Jubran A, Laghi F. Patient–ventilator interaction. Am J Respir Crit Care Med. 2001;163(5):1059-63.
  • 30. de Wit M, Pedram S, Best AM. Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care 2009;24(1):74-80.
  • 31. Nin N, Muriel A, Peñuelas O, Brochard L, Lorente JA, Ferguson ND, et al. Severe hypercapnia and outcome of mechanically ventilated patients with moderate or severe acute respiratory distress syndrome. Intensive Care Med. 2017;43(2):200-8. doi:10.1007/s00134-016-4611-1.
  • 32. Marcy TW, Marini JJ. Inverse ratio ventilation in ARDS: rationale and implementation. Chest 1991;100(2):494-504.
  • 33. Aoyama H, Uchida K, Aoyama K. Assessment of Therapeutic Interventions and Lung Protective Ventilation in Patients With Moderate to Severe Acute Respiratory Distress Syndrome: A Systematic Review and Network Meta-analysis. JAMA Netw Open 2019;2(7):e198116. doi:10.1001/jamanetworkopen.2019.8116.
  • 34. Kallet RH. A comprehensive review of prone position in ARDS. Respir Care 2015;60(11): 1660-87.
  • 35. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159-68.
  • 36. Guérin C. Prone position. Curr Opin Crit Care 2014;20:92-7.
  • 37. Telias I, Katira BH, Brochard L. Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19? JAMA. 2020 May 15. Online ahead of print.
  • 38. Brogan TV, Lequier L, Lorusso R, MacLaren G, Peek G. Extracorporeal life support: The ELSO Red Book. 5th ed. 2017.
  • 39. Kulkarni T, Sharma NS, Diaz-Guzman E. Extracorporeal membrane oxygenation in adults: A practical guide for internists. Cleve Clin J Med. 2016; 83 (5): 373-384.
  • 40. Lequier L, Horton SB, McMullan DM, Bartlett RH. Extracorporeal membrane oxygenation circuitry. Pediatr Crit Care Med. 2013;5(1):7-12.
  • 41. Bayar MK, Kosovalı DB. Ekstrakorporeal Membran Oksijenizasyonu. Güncel Göğüs Hastalıkları Serisi 2018:6(1):93-103.
  • 42. Thiagarajan RR, Barbaro RP, Rycus PT, McMullan DM, Conrad SA, Fortenberry JD, et al. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63(1):60-7.
  • 43. Karagiannidis C, Brodie D, Strassmann S, Stoelben E, Philipp A, Bein T, et al. Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med. 2016;42(5):889-96.
There are 43 citations in total.

Details

Primary Language English
Subjects Intensive Care
Journal Section Review Article
Authors

Turgut Teke 0000-0001-5955-6255

Taha Ulutan Kars This is me

Korhan Kollu This is me

Publication Date August 26, 2020
Submission Date July 24, 2020
Acceptance Date August 14, 2020
Published in Issue Year 2020 Volume: 2 Issue: 2

Cite

APA Teke, T., Kars, T. U., & Kollu, K. (2020). VENTILATORY MANAGEMENT STRATEGIES FOR ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) DUE TO COVID-19 DISEASE. Eurasian Journal of Critical Care, 2(2), 171-182.
AMA Teke T, Kars TU, Kollu K. VENTILATORY MANAGEMENT STRATEGIES FOR ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) DUE TO COVID-19 DISEASE. Eurasian j Crit Care. August 2020;2(2):171-182.
Chicago Teke, Turgut, Taha Ulutan Kars, and Korhan Kollu. “VENTILATORY MANAGEMENT STRATEGIES FOR ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) DUE TO COVID-19 DISEASE”. Eurasian Journal of Critical Care 2, no. 2 (August 2020): 171-82.
EndNote Teke T, Kars TU, Kollu K (August 1, 2020) VENTILATORY MANAGEMENT STRATEGIES FOR ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) DUE TO COVID-19 DISEASE. Eurasian Journal of Critical Care 2 2 171–182.
IEEE T. Teke, T. U. Kars, and K. Kollu, “VENTILATORY MANAGEMENT STRATEGIES FOR ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) DUE TO COVID-19 DISEASE”, Eurasian j Crit Care, vol. 2, no. 2, pp. 171–182, 2020.
ISNAD Teke, Turgut et al. “VENTILATORY MANAGEMENT STRATEGIES FOR ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) DUE TO COVID-19 DISEASE”. Eurasian Journal of Critical Care 2/2 (August 2020), 171-182.
JAMA Teke T, Kars TU, Kollu K. VENTILATORY MANAGEMENT STRATEGIES FOR ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) DUE TO COVID-19 DISEASE. Eurasian j Crit Care. 2020;2:171–182.
MLA Teke, Turgut et al. “VENTILATORY MANAGEMENT STRATEGIES FOR ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) DUE TO COVID-19 DISEASE”. Eurasian Journal of Critical Care, vol. 2, no. 2, 2020, pp. 171-82.
Vancouver Teke T, Kars TU, Kollu K. VENTILATORY MANAGEMENT STRATEGIES FOR ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) DUE TO COVID-19 DISEASE. Eurasian j Crit Care. 2020;2(2):171-82.

Indexing and Abstracting

1493315074 2096820551208572097121274