Review
BibTex RIS Cite

Çeşitli Sektörlerde Endüstriyel Atıksuyun Geri Kazanılması ve Yeniden Kullanılmasınin Değerlendirilmesi

Year 2019, Volume: 2 Issue: 1, 19 - 43, 18.07.2019

Abstract

Endüstri
devriminin ve hızlı kentleşmenin başlangıcında, doğanın sonsuza kadar artan
kirliliği gizleme gücünün olduğu veya sonsuz bir muamele kapasitesine sahip
olduğu düşünülüyordu. Bununla birlikte, zamanla bütün ekosistem çevre kirliliğinden
olumsuz olarak etkilenmiş, gelişmekte olan problemlerin anlaşılması, tespit
edilmesi ve ölçümlenerek önlem alma çözümlerinin ortaya konulma faaliyetleri
büyük önem kazanmıştır. Bundan dolayı, su ve toprak kaynaklarının doğru
kullanımını sağlayabilir ve ekosistemlerin kullanım ve koruma sınırları
dahilinde dengesini göz önünde bulundurursak, 'sürdürülebilirlik' de
sağlanabilir. Su kaynaklarını sürdürülebilir bir şekilde korumak, atık suları
geri kazanmanın ve yeniden kullanmanın tek yoludur. Atık suyun tekrar
kullanılması tatlı su kaynakları tüketimini azaltır ve arıtılan atık suyun
çevresel etkisi en aza indirilebilir.



Bu
çalışmada metal, kağıt hamuru ve kâğıt, ilaç ve kimya endüstrisi gibi farklı
sektörler için su tüketimi, proses suyu kalitesi, atık su kaynakları, atık
suların arıtılması ve tekrar kullanılmaları açısından literatür araştırması yapılmış
ve yeniden kullanım alternatiflerine odaklanılmıştır. Sonuç olarak, her
endüstriyel tesis kendi üretim dinamikleri dikkate alınarak tasarlanmalı ve
değerlendirilmelidir. Ek olarak, en ekonomik arıtma ve yeniden kullanım
seçeneğini seçmek için farklı endüstriyel atık sular için benzer çalışmalar
yapılmalıdır.

References

  • [1] Symposium on Water Consumption and Re-use (2008). İznik Bursa.
  • [2] Töre G. Yıldız, Güngör R. ve Yavuz S., Evaluation of Recovery Efficiency of Denim washing Wastewater by Granular Filtration After Biological Treatment, Corlu/Tekirdag, I.T.U. 12. Industrial Pollution Control Symposium 16-18th June 2010 Journal of Hazardous Materials 153 1142–1148.
  • [3] MEGEP, Food and Beverage Services, Beer Service, ANKARA- 2007.
  • [4] MEGEP, Food Technology, Drinking Water Analysis, 2007
  • [5] URL 1. INDUSTRIAL POLLUTION CONTROL, Official Web Site of Dokuz Eylül University “web.deu.edu.tr”, 2013.[6] Yıldız, G., Orhon, D., Ubay Çokgör, E., İnsel, G. (2005). Characterization and Biological Treatability of Acrylic and Polyamide Fiber Based Carpet Finishing Wastewater, itüdergisi/e, Su Kirlenmesi Kontrolü, Cilt:15, Sayı:1-3, 93-106. [7] Abdel-Halim S. H., Shehata A. M. A., El-Shahat M. F. (2004). Removal of Cadmium Ions from Industrial Waste Water Plants Around Cairo”, Bull. Environ. Contam. Toxicol. 74:78–85.
  • [8] Ghogare P. D. , Gupta S. G. (2012). Microbial Remediation of Polyfilm Manufacturing Industrial Effluent, Water Air Soil Pollut., 223:2641–2649, DOI 10.1007/s11270-011-1056-6.
  • [9] Salman Ashraf, a S., Rauf a M.A. & Fatema H. Abdullah.(2012). A hves-on approach to teaching environmental awareness ve pollutant remediation to undergraduate chemistry students, Research in Science & Technological Education, 30:2, 173-184, DOI:10.1080/02635143.2012.698604.
  • [10] Cliona O’Neill , Freda R Hawkes, Dennis L Hawkes, Nidia D Lourenço, Helena M Pinheiro, Wouter Delée (1999),‘’ Colour in textile effluents – sources, measurement, discharge consents and simulation: a review’’Journal of Chemical Technology and Biotechnology, Volume 74 (1), pp.1009-1018.
  • [11] L. Gurtubaya, I. Da nobeitiab, A. Baronaa, J. Pradob, A. Elías, “Viability study on two treatments for an industrial effluent containing sulphide ve fluoride”, Chemical Engineering Journal 162 (2010) 91–96
  • [12] S. Sivaprakasam, S. Mahadevan, S. Sekar ve S. Rajakumar, 2008, “Biological treatment of tannery wastewater by using salt-tolerant bacterial strains”, doi:10.1186/1475-2859-7-15
  • [13] Padma S. Vankar, Ashish Dwivedi, Rishabh Saraswat (2006),’’ Sodium sulphate as a curing agent to reduce saline chloride ions in the tannery effluent at Kanpur: A preliminary study on techno-economic feasibility’’, Desalination, Volume 201, Issue 1-3pp.14-22.
  • [14] B. Ericsson, B. Hallmans, 1996. “Treatment of saline wastewater for zero discharge at the Debiensko coal mines in Polve”, Desalination 105 (1996) 115-123.
  • [15]Olivier Lefebvre, Rene´ g, 2006, “Treatment of organic pollution in industrial saline wastewater: A literature review”, Francem Water Research 40 (2006) 3671 – 3682.
  • [16] Ben J. Kefford, Ralf B. Schäfer, L. Metzeling, 2012. Risk assessment of salinity ve turbidity in Victoria (Australia) to stream insects, Science of the Total Environment 415 (2012) 61–68.
  • [17] F. Fu, Q. Wang, 2011, Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92 (2011) 407-418.
  • [18] R. Gebauer, “Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production”, Bioresource Technology 93 (2004) 155–167.
  • [19] C. Boillot, Y. Perrodin, 2008. Joint-action ecotoxicity of binary mixtures of glutaraldehyde ve surfactants used in hospitals, Ecotoxicology ve Environmental Safety 71 (2008) 252–259.
  • [20] Oyaro, N., Juddy, O., Murago, E.N.M., Gitonga, E., 2007. The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya. Int. J. Food Agric. Environ. 5, 119-121.
  • [21] Paulino, A.T., Minasse, F.A.S., Guilherme, M.R., Reis, A.V., Muniz, E.C., Nozaki, J., 2006. Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. J. Colloid Interface Sci. 301, 479-487.
  • [22] Borba, C.E., Guirardello, R., Silva, E.A., Veit, M.T., Tavares, C.R.G., 2006. Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Biochem. Eng. J. 30, 184-191.[23] C Namasivayam, K Kadirvelu,(1999) ‘’ Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid by-product: coirpith’’, Carbon, Volume 37, Issue 1, pp.79-84.
  • [24] Naseem, R., Tahir, S.S., 2001. Removal of Pb(II) from aqueous solution by using bentonite as an adsorbent. Water Res. 35, 3982-3986.
  • [25] Khezami, L., Capart, R., 2005. Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. J. Hazard. Mater. 123, 223-231.
  • [26] Hongmei Liao, Xiangzhen Kong, Zhuyuan Zhang, Xiaojun Liao, Xiaosong Hu (2010). Modeling the inactivation of Salmonella typhimurium by dense phase carbon dioxide in carrot juice. Food Microbiology 27, 94–100.
  • [27] Jian-Jun f, Maung-Nyunt Wai, Maung-Htun Oo, Fook-Sin Wong, (2002). A feasibility study on the treatment and recycling of a wastewater from metal plating Journal of Membrane Science 208, 213–221.
  • [28] Ku, Y., Jung, I.L., 2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35, 135-142.
  • [29] Özverdi, A., Erdem, M., 2006. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J. Hazard. Mater. 137, 626-632.
  • [30] González-Muñoz, M.J., Rodríguez, M.A., Luquea, S., Álvareza, J.R., 2006. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination 200, 742-744.
  • [31] Prabir Ghosh, Amar Nath Samanta, Subhabrata Ray, (2011), ‘’ Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation’’, Desalination, Volume 266, Issue s 1-3,pp. 213-217.
  • [32] Kang, S.Y., Lee, J.U., Moon, S.H., Kim, K.W., 2004. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56, 141-147.
  • [33] A. Papadopoulos, D. Fatta, K. Parperis, A. Mentzis, K.-J. Haralambous, M. Loizidou,(2004), ‘’ Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods’’, Separation and Purification Technology, Volume 39, Issue 3, pp.181-188.
  • [34] Alyüz, B., Veli, S., 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J. Hazard. Mater. 167, 482-488.
  • [35] Gode, F., Pehlivan, E., 2006. Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J. Hazard. Mater. 136, 330-337.
  • [36] Motsi, T., Rowson, N.A., Simmons, M.J.H., 2009. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process 92, 42-48.
  • [37] Ostroski, I.C., Barros, M.A.S.D., Silvab, E.A., Dantas, J.H., Arroyo, P.A., Lima, O.C.M., 2009. A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY. J. Hazard. Mater. 161, 1404-1412.
  • [38] Taffarel, S.R., Rubio, J. (2009). On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Miner. Eng. 22, 336-343.
  • [39] Doula, M.K., Dimirkou, A., 2008. Use of of Cu2+ ions from heavily contaminated drinking water samples. J. Hazard. Mater. 151, 738-745.
  • [40] Doula, M.K., 2009. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res. 43, 3659-3672.
  • [41] Jusoh, A., Shiung, L.S., Ali, N., Noor, M.J.M.M., 2007. A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination 206, 9-16.
  • [42] Kang, K.C., Kim, S.S., Choi, J.W., Kwon, S.H., 2008. Sorption of Cu2+ and Cd2+ onto acid- and base-pretreated granular activated carbon and activated carbon fiber samples. J. Ind. Eng. Chem. 14, 131-135.
  • [43] Wang, H.J., Zhou, A.L., Peng, F., Yu, H., Yang, J., 2007. Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J. Colloid Interface Sci. 316, 277-283.
  • [44] Kabbashi, N.A., Atieh, M.A., Al-Mamun, A., Mirghami, M.E.S., Alam, M.D.Z., Yahya, N., 2009. Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J. Environ. Sci. 21, 539-544.[45] Kuo, C.Y., Lin, H.Y., 2009. Adsorption of aqueous cadmium (II) onto modified multiwalled carbon nanotubes following microwave/chemical treatment. Desalination 249, 792-796.
  • [46] Pillay, K., Cukrowska, E.M., Coville, N.J., 2009. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J. Hazard. Mater. 166, 1067-1075.
  • [47] Li, Y.H., Liu, F.Q., Xia, B., Du, Q.J., Zhang, P., Wang, D.C., Wang, Z.H., Xia, Y.Z., 2010. Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J. Hazard. Mater. 177, 876-880.
  • [48] Kandah, M.I., Meunier, J.L., 2007. Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146, 283-288.
  • [49] El Samrani, A.G., Lartiges, B.S., Villiéras, F., 2008. Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res. 42, 951-960.
  • [50] Chang, Q., Wang, G., 2007. Study on the macromolecular coagulant PEX which traps heavy metals. Chem. Eng. Sci. 62, 4636-4643.
  • [51] Yuan, X.Z., Meng, Y.T., Zeng, G.M., Fang, Y.Y., Shi, J.G., 2008. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloid Surf. 317, 256-261.
  • [52] Landaburu-Aguirre, J., García, V., Pongrácz, E., Keiski, R.L., 2009. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination 240, 262-269.
  • [53] Sampera, E., Rodrígueza, M., De la Rubia, M.A., Prats, D., 2009. Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep. Purif. Technol. 65, 337-342.
  • [54] Murthy, Z.V.P., Chaudhari, L.B., 2008. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 160, 70-77.
  • [55] Muthukrishnan, M., Guha, B.K., 2008. Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination 219, 171-178.
  • [56] Cséfalvay, E., Pauer, V., Mizsey, P., 2009. Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination 240, 132-142.
  • [57] Ahmad, A.L., Ooi, B.S., 2010. A study on acid reclamation and copper recovery using low pressure nanofiltration membrane. Chem. Eng. J. 56, 257-263.
  • [58] Nguyen, C.M., Bang, S., Cho, J., Kim,K.W., 2009. Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination 245, 82-94.
  • [59] Murthy, Z.V.P., Chaudhari, L.B., 2009. Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using SpieglereKedem model. Chem. Eng. J. 150, 181-187.
  • [60] Cifuentes, L., García, I., Arriagada, P., Casas, J.M., 2009. The use of electrodialysis for metal separation and water recovery from CuSO4-H2SO4- Fe solutions. Sep. Purif. Technol. 68, 105-108.
  • [61] Lambert, J., Avila-Rodriguez, M., Durand, G., Rakib, M., 2006. Separation of sodium ions from trivalent chromium by electrodialysis using monovalent cation selective membranes. J. Membr. Sci. 280, 219-225.
  • [62] Mohammadi, T.,Razmi, A., Sadrzadeh, M., 2004. Effect of operating parameterson Pb2+ separation from wastewater using electrodialysis. Desalination 167, 379-385.
  • [63] S. Wang, A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigm. 76 (2008), pp. 714–720.
  • [64] E. Neyens and J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J.Hazard. Mater. 98 (2003), pp. 33–50.
  • [65] R.M. Huang, J.Y. He, J. Zhao, Q. Luo & C.M. Huang, 2011, Fenton–biological treatment of reverse osmosis membrane concentrate from a metal plating wastewater recycle system.
  • [66] Bajpai P., 2010, e-book; Environmentally Friendly Production of Pulp and Paper.[67] Ravi D, Vijayabharathi V, Parthasarathy R and P. Suresh, 2014, Impact of Paper Pulp Industrial Effluent on Soybean Crop, Research Journal of Science and Technology, 6(4): October-December, 2014, 199-202.
  • [68] Holik H. Handbook of paper and board. Germany: Wiley-VCH; 2006.
  • [69] Nemerow NL. Industrial waste treatment. Elsevier Science & Technology Books 0123724937; 2006.
  • [70] Cooling BREF, EC 2001. "Integrated Pollution Prevention ve Control (IPPC) Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems".
  • [71] TUBITAK KAMAG PROJECT HANDBOOK, number 109G083, 2013.
  • [72] D. Pokhrel, T. Viraraghavan, 2004. / Science of the Total Environment 333 (2004) 37–58 Treatment of pulp and paper mill wastewater—a review Department of Environmental and System Engineering, Faculty of Engineering, University of Regina, 3737 Wascana Parkway, Regina, SK, Canada S4S 0A2 Received 2 July 2003; received in revised form 29 January 2004; accepted 7 May 2004
  • [73] Wang LK, Hung YT, Lo HH, Yapijakis C. 2006. Waste treatment in the process industries. Taylor & Francis Group, 978-0-8493-7233-9.
  • [74] N. Buyukkamaci, E. Koken, Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry, Science of the Total Environment 408 (2010) 6070–6078
  • [75] Rintala JA, Puhakka JA. Anaerobic treatment in pulp and paper mill waste management: a review. Bioresour Technol 1994;47:1– 18.
  • [76] Temmink H, Grolle K. Tertiary activated carbon treatment of paper and board industry wastewater. Bioresour Technol 2005;96:1683–9.
  • [77] Amat AM, Arques A, Lo´pez F, Miranda MA. 2005. Solar photo-catalysis to remove paper mill wastewater pollutants. Sol Energy 2005;79:393–401.
  • [78] Savant DV, Abdul-Rahman R, Ranade DR. Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Bioresour Technol 2006;97:1092–104.
  • [79] Catalkaya EC, Kargi F. 2008. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals. J Environ Manage 2008;87:396–404.
  • [80] Yuzhong Zhang, Chunming Ma, Feng Ye, Ying Kong, Hong Li, The treatment of wastewater of paper mill with integrated membrane process, Desalination 236 (2009) 349–356
  • [81] Ahmad AL, Wong SS, Teng TT, Zuhairi A. Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater. Chem Eng J 2008;137:510–7.
  • [82] M. Pizzichini, C. Russo, C. Di Meo, Purification of pulp and paper wastewater, with membrane technology, for water reuse in a closed loop, Desalination 178 (2005) 351–359.
  • [83] M. Kallioinena, S.P. Reinikainenb, J. Nuortila-Jokinena, M. M¨antt¨aria, T. Sutelac, P. Nurminenc, Chemometrical approach in studies of membrane capacity in pulp and paper mill application, Desalination 175 (2005) 87
  • [84] A. Dafinov, J. Font, R. Garcia-Valls, 2005; Processing of black liquors by UF/NF ceramic membranes, Desalination 173 (2005) 83–90.
  • [85] Zhang Y, Ma C, Ye F, Kong Y, Li H. The treatment of wastewater of paper mill with integrated membrane process. Desalination 2009;236:349–56.
  • [86] S.K. Nataraj, S. Sridhar, I.N. Shaikha, D.S. Reddya, T.M. Aminabhavi, Membrane-based microfiltration/electrodialysis hybrid process for the treatment of paper industry wastewater, Separation and Purification Technology 57 (2007) 185–192.
  • [87] Edelmann, 1997; Edelmann, K., Kaijaluoto, S. Karlsson, M., Towards effluent free paper mill, Das Papier, 21. Jahrg., No. 6A, 1997, p. V 138- 145.
  • [88] Mohamed I. Badawy, Rifaat A.Wahaab, A.S. El-Kalliny, Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater, Journal of Hazardous Materials 167 (2009) 567–574.
  • [89] Guide; Industrial Hazardous Waste Guide, Pharmaceutical Industry.; 2013.
  • [90] Installation Engineering Magazine, 93,2006
  • [91] N.Didem SERT, Color and COD removal in Drug Industry Wastewater by means of Fenton Process; Istanbul University, 2006.
  • [92] Zuccato, E., Calamari, D., Natangelo, M., Fanelli, R., 2000. Presence of therapeutic drugs in the environment. Lancet 355, 1789–1790.
  • [93] Gogate, P.R., Pandit, A.B., 2004. A review of imperative technologies for wastewater treatment II: hybrid methods. Adv. Environ. Res. 8 (3–4), 553–597.
  • [94] Parsons, S., 2004. Advanced Oxidation Processes for Water and Wastewater Treatment. IWA Publishing, London.
  • [95] G. Mascolo, L. Balest, D. Cassano, G. Laera, A. Lopez, A. Pollice, C. Salerno, 2010. Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment, Bioresource Technology 101 (2010) 2585–2591.
  • [96] Xu, W.-H., Zhang, G., Zou, S.-C., Li, X.-D., Liu, Y.-C., 2007. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high performance liquid chromatography electrospray ionization tandem mass spectrometry. Environ. Pollut. 145, 672-679.
  • [97] Baquero, F., Martínez, J.-L., Cantón, R., 2008. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19, 260-265.
  • [98] Martínez, J.L., 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut 157, 2893e2902.
  • [99] Mompelat, S., LeBot, B., Thomas, O., 2009. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 35, 803e814.
  • [100] Díaz-Cruz, M.S., López de Alda, M.J., Barceló, D., 2003. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal. Chem. 22, 340-351.
  • [101] Adams, C., Asce, M., Wang, Y., Loftin, K., Meyer, M., 2002; Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 128, 253-260.
  • [102] Göbel, A., McArdell, C.S., Joss, A., Siegrist, H., Giger, W., 2007. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Total Environ. 372, 361-371.
  • [103] Stackelberg, P.E., Gibs, J., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Lippincott, R.L., 2007. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 377, 255-272.
  • [104]Vieno, N.M., Hrkki, H., Tuhkanen, T., Kronberg, L., 2007. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ. Sci. Technol. 41, 5077-5084.
  • [105] Arikan, O.A., 2008. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. J. Hazard. Mater. 158, 485-490.
  • [106] Chelliapan, S., Wilby, T., Sallis, P.J., 2006. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Res. 40, 507-516.
  • [107] Acero, J.L., Benitez, F.J., Real, F.J., Roldan, G., 2010; Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices. Water Res. 44, 4158-4170.
  • [108]Navalon, S., Alvaro, M., Garcia, H., 2008. Reaction of chlorine dioxide with emergent water pollutants: products study of the reaction of three b-lactams antibiotics with ClO2. Water Res. 42, 1935-1942.
  • [109]Ikehata, K., Naghashkar, N.J., El-Din, M.G., 2006. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci. Eng. 28, 353-414.
  • [110] Andreozzi, R., Caprio, V., Insola, A., Marotta, R., 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51-59.
  • [111] Gunten, U., 2003. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 37, 1443-1467.
  • [112] Andreozzi, R., Canterino, M., Marotta, R., Paxeus, N., 2005. Antibiotic removal from wastewaters: the ozonation of amoxicillin. J. Hazard. Mater. 122, 243-250.
  • [113] Balcioglu, I.A., Ötker, M., 2003. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere 50, 85-95.
  • [114] Arslan-Alaton, I., Dogruel, S., 2004. Pre-treatment of penicillin formulation effluent by advanced oxidation processes. J. Hazard. Mater. B112, 105-113.
  • [114-a] Arslan-Alaton, I., Gurses, F., 2004. Photo-Fenton-like and Fenton-like oxidation of Procaine Penicillin G formulation effluent. J. Photochem. Photobiol. A 165, 165e175.
  • [115] Cokgor, E.U., Arslan-Alaton, I., Karahan, O., Dogruel, S., Orhon, D., 2004. Biological treatability of raw and ozonated penicillin formulation effluent. J. Hazard. Mater. B116, 159-166.
  • [116] Arslan-Alaton, I., Caglayan, A.E., 2005. Ozonation of procaine penicillin G formulation effluent. Part I: Process optimization and kinetics. Chemosphere 59, 31e39.
  • [117] Arslan-Alaton, I., Caglayan, A.E., 2006. Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent. Ecotoxicol. Environ. Saf. 63, 131-140.
  • [118] Qiang, Z., Adams, C., Surampalli, R., 2004. Determination of ozonation rate constants for Lincomycin and Spectinomycin. Ozone Sci. Eng. 26, 525-537.
  • [118-a]Elmolla, E., Chaudhuri, M., 2009. Improvement of biodegradability of synthetic amoxicillin wastewater by photo-Fenton process. World Appl. Sci. J. 5, 53-58.
  • [118-b] Trovó, A.G., Melo, S.A.S., Nogueira, R.F.P., 2008. Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process e application to sewage treatment plant effluent. J. Photochem. Photobiol. A 198, 215e220.
  • [119] Rozas, O., Contreras, D., Mondaca, M.A., Pérez-Moya, M., Mansilla, H.D., 2010. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. J. Hazard. Mater. 177, 1025-1030.
  • [120] Shemer, H., Kunukcu, Y.K., Linden, K.G., 2006. Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere 63, 269-276.
  • [121] Bautitz, I.R., Nogueira, R.F.P., 2007. Degradation of tetracycline by photo-Fenton process e solar irradiation and matrix effect. J. Photochem. Photobiol. A 187, 33-39.
  • [122] Bobu, M., Yediler, A., Siminiceanu, I., Schulte-Hostede, S., 2008. Degradation studies of ciprofloxacin on a pillared iron catalyst. Appl. Catal. B 83, 15-23.
  • [123] Guinea, E., Brillas, E., Centellas, F., Cañizares, P., Rodrigo, M.A., Sáez, C., 2009. Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation: a comparison. Water Res. 43, 2131-2138.
  • [124] Gu, González, O., Sans, C., Esplugas, S., 2007. Sulfamethoxazole abatement by photo- Fenton. Toxicity, inhibition and biodegradability assessment of intermediates. J. Hazard. Mater. 146, 459e464.
  • [125] Trovó, A.G., Nogueira, R.F.P., Agüera, A., Sirtori, C., Fernández-Alba, A.R., 2009. Photodegradation of sulfamethoxazole in various aqueous media: persistence, toxicity and photoproducts assessment. Chemosphere 77, 1292-1298.
  • [125-a] Dantas, R.F., Contreras, S., Sans, C., Esplugas, S., 2008. Sulfamethoxazole abatement by means of ozonation. J. Hazard. Mater. 150, 790-794.
  • [126] Pérez-Moya, M., Graells, M., Castells, G., Amigó, J., Ortega, E., Buhigas, G., Pérez, L.M., Mansilla, H.D., 2010. Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Res. 44, 2533-2540.
  • [127] Hirose, J., Kondo, F., Nakano, T., Kobayashi, T., Hiro, N., Ando, Y., Takenaka, H., Sano, K., 2005. Inactivation of antineoplastics in clinical wastewater by electrolysis. Chemosphere 60, 1018-1024.
  • [128] Jara, C.C., Fino, D., Specchia, V., Saracco, G., Spinelli, P., 2007. Electrochemical removal of antibiotics from wastewater. Appl. Catal. B 70, 479-487.
  • [128-a] Panizza, M., Cerisola, G., 2009. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109, 6541-6569.
  • [129] Estevinho, B.N., Martins, I., Ratola, N., Alves, A., Santos, L., 2007. Removal of 2,4- dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant. J. Hazard. Mater. 143, 535-540.
  • [130] Crisafully, R., Milhome, M.A.L., Cavalcante, R.M., Silveira, E.R., De Keukeleire, D., Nascimento, R.F., 2008. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour. Technol. 99, 4515-4519.
  • [131] Chen, W.-R., Huang, C.-H., 2010. Adsorption and transformation of tetracycline antibiotics with aluminium oxide. Chemosphere 79, 779-785.
  • [132] Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., Ismadji, S., 2009. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanism, isotherms and kinetics. Water Res. 43, 2419-2430.
  • [133] Méndez-Díaz, J.D., Prados-Joya, G., Rivera-Utrilla, J., Leyva-Ramos, R., Sánchez- Polo, M., Ferro-García, M.A., Medellín-Castillo, N.A., 2010. Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase. J. Colloid Interf. Sci. 345, 481-490.
  • [134] Kim, S.H., Shon, H.K., Ngo, H.H., 2010. Adsorption characteristics of antibiotics trimethoprim on powered and granular activated carbon. J. Ind. Eng. Chem. 16, 344-349.
  • [135] Li, S.-Z., Li, X.-Y., Wang, D.-Z., 2004. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Sep. Purif. Technol. 34, 109-114.
  • [136] Kosutic, K., Dolar, D., A_sperger, D., Kunst, B., 2007. Removal of antibiotic from model wastewater by RO/NF membrane. Sep. Purif. Technol. 53, 244-249.
  • [137] Radjenovic, J., Petrovi_c, M., Ventura, F., Barceló, D., 2008. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42, 3601-3610.
  • [138] S. Kim, S.Lee, S. Hong, Y. Ohb, M. Seoulb, J. Kweonc, T. Kimc, 2009, Biofouling of reverse osmosis membranes: Microbial quorum sensing and fouling propensity, Volume 247, Issues 1–3, October 2009, Pages 303–315
  • [139] Jawad H. Al-Rifai, Candace L. Gabelish, Andrea I. Scha¨fer, 2007, Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia, Chemosphere 69 (2007) 803–815.
  • [140] Xu, T., 2005. Ion exchange membranes: state of their development and perspective. J. Membr. Sci. 263, 1e29.
  • [141] Nagarale, R.K., Gohil, G.S., Shahi, V.K., 2006. Recent developments on ion-exchange membranes and electro-membrane processes. Adv. Colloid Interf. Sci. 119, 97e130.
  • [142] Dickert, C., 2007. Ion exchange. In: Kirk, E.R., Othmer, D.F., Kroschwitz, J.I., Howe-Grant, M. (Eds.), KirkeOthmer Encyclopedia Chemical Technology. John Wiley & Sons, New York.
  • [143] Klavarioti, M.,Mantzavinos, D., Kassinos, D.,2009. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int 35, 402-417.
  • [144] Sánchez-Polo, M., Rivera-Utrilla, J., Prados-Joya, G., Ferro-García, M.A., Bautista- Toledo, I., 2008. Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon systems. Water Res. 42, 4163-4171.
  • [145] Zhang, G., Ji, S., Xi, B., 2006. Feasibility study of treatment of amoxicillin wastewater with a combination of extraction, Fenton oxidation and reverse osmosis. Desalination 196, 32-42.
  • [146] Tekin, H., Bilkay, O., Ataberk, S.S., Balta, T.H., Ceribasi, I.H., Sanin, F.D., Dilek, F.B., Yetis, U., 2006. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J. Hazard. Mater 136, 258-265.
  • [147] Augugliaro, V., Gárcia-López, E., Loddo, V., Malato-Rodríguez, S., Maldonado, I., Marcì, G., Molinari, R., Palmisano, L., 2005. Degradation of lincomycin in aqueous medium: coupling of solar photocatalysis and membrane separation. Sol. Energy 79, 402-408.
  • [148]Ötker, H.M., Akmehmet-Balcio_glu, I., 2005. Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. J. Hazard. Mater. 122, 251-258.
  • [149] Sirtori, C., Zapata, A., Oller, I., Gernjak, W., Agüera, A., Malato, S., 2009. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Res. 43, 661-668.
  • [150] Li. Xu, H. Zhao, S. Shi, G. Zhang, J. Ni, 2008; Electrolytic treatment of C.I. acid orange 7 in aqueous solution using a three-dimensional electrode reactor, Dyes Pigments 77 (2008) 158–164, doi:http://dx.doi.org/10.1016/j.dye- pig.2007.04.004.
  • [151] URL 2. http://www.invest.gov.tr/ENUS/SECTORS/Pages/Chemical.aspx, 2015
  • [152] URL 3. http://en.wikipedia.org/wiki/Chemical_industry, 2015
  • [153] URL 4. http://www.jurby.com/en/industries-we-serve/chemical-industry-/, 2015
  • [154] URL 11. https://www.nibusinessinfo.co.uk/content/water-use-and-efficiency-chemical-manufacturing, 2015
  • [155] URL 5. http://chemwater.eu/index.php/Chemistry-Water-synergies/Chemistry Watersynergies.html, 2015
  • [156] URL 6. http://www.aqua-tools.com/uk/industrial_process_water.php, 2015.
  • [157]Water Pollution Control Federation, 1989
  • [158] URL 7. http://www.waterworld.com/articles/iww/print/volume-12/issue-05/feature-editorial/water-treatment-chemical-and-pharmaceutical-industries.html, 2015.
  • [159] G. Allen Burton, Jr., Robert Pitt, 2001. Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers. New York: CRC/Lewis Publishers. ISBN 0-87371-924-7. Chapter 2.
  • [160]Schueler, Thomas R., 2000 "Cars Are Leading Source of Metal Loads in California." Reprinted in The Practice of Watershed Protection, Center for Watershed Protection. Ellicott City, MD.
  • [161] URL 8. http://en.wikipedia.org/wiki/Water_pollution, 2015.
  • [162] EPA, 2009; “Illness Related to Sewage in Water.” Accessed February 20, 2009. EPA, 2004; "Report to Congress: Impacts and Control of CSOs and SSOs." August 2004. Document No. EPA-833-R-04-001.
  • [163] URL 9. http://en.wikipedia.org/wiki/Water_pollution, 2015.
  • [164] URL 10. http://www.water-pollution.org.uk/chemical.html, 2015URL 11.
  • [165] Akbulut H.Y., Karpuzcu M., Cihan F.,A. Dimoglo, 2003; Petrochemical wastewater treatment by means of clean electrochemical technologies Environmental Engineers, 5th National Environmental Engineering Congress, Mersin, s. 164-178.
  • [166] Sponza D.T. (2003). Investigation of extracellular polymer substances (eps) and physicochemical properties of different activated sludge flocs under steady-state conditions, Enzyme Microbiology Technology, 32, 375-385.
  • [167] Bautista P., A F Mohedano, J A Casas, J A Zazo and J J Rodriguez Ingenier´ıa Qu´ımica, 2008. Universidad Auto´ noma de Madrid, Crta. de Colmenar Km.15, 28049 Madrid, Spain J Chem Technol Biotechnol 83:1323–1338 (2008), Review An overview of the application of Fenton oxidation to industrial wastewaters treatment.
  • [168] Barbusinski K and Filipek K, Use of Fenton’s reagent for removal of pesticides from industrial wastewater. 2001. Pol J Environ Stud 10:207–212 (2001).
  • [169] Barbusinski K, 2005. Toxicity of industrial wastewater treated by Fenton’s reagent. Pol J Environ Stud 14:11–16 (2005).
  • [170] Sekaran, G; Karthikeyan, S; Evvie, C; Boopathy, R; Maharaja, P, 2013; Oxidation of refractory organics by heterogeneous Fenton to reduce organic load in tannery wastewater. Clean Technologies and Environmental Policy 15.2 (Apr 2013): 245-253.
  • [171] Hayo, M.G., van der Werf, 1996. Assessing the impact of pesticides on the environment. Agric. Ecosyst. Environ. 60, 81–96.
  • [172] M.M. Ballesteros Martı´na, J.A. Sa´nchez Pe´reza,*, J.L. Casas Lo´pez, I. Ollerb, S. Malato Rodrı´guezb , Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation , water r e s e arch 4 3 ( 2 0 0 9 ), 6 5 3 – 6 6 0
  • [173] Lafi, W.K., Al-Qodah, Z., 2006. Combined advanced oxidation and biological treatment process for the removal of pesticides from aqueous solutions. J. Hazard. Mater. 137, 489–497.
  • [174] Smita Masid, Sujata Waghmare, Nitin Gedam, Rohit Misra, Rita Dhodapkar, Tapas Nandy, N.N. Rao Desalination 259, 2010; 192–196, Impact of electrooxidation on combined physicochemical and membrane treatment processes: Treatment of high strength chemical industry wastewater.
  • [175] Nitin Gedam, Nageswara Rao Neti, 2014; Carbon attrition during continuous electrolysis in carbon bed based three-phase three-dimensional electrode reactor: Treatment of recalcitrant chemical industry wastewater, Journal of Environmental Chemical Engineering 2 (2014) 1527–1532.
  • [176] Y. Xiong, C. He, H.T. Karlsson, X. Zhu, 2003; Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol, Chemosphere 50 (2003) 131–136, doi: http://dx.doi.org/10.1016/S0045-6535(02)00609-4.
  • [177] X. Wu, X. Yang, D. Wu, R. Fu, 2008; Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor, Chem. Eng. J. 138 (2008) 47–54, doi:http://dx.doi.org/ 10.1016/j.cej.2007.05.027.
  • [178] Y. Deng, J.D. Englehardt, 2007; Electrochemical oxidation for landfill leachate treatment, Waste Manage. 27 (2007) 380–388, doi:http://dx.doi.org/10.1016/j. wasman.2006.02.004.
  • [179] Kyung-Nan Mın, September 2006; Volatıle organic compound control in chemical industry wastewater using a membrane bioreactor: emission reduction and microbıal characterıiation, University of Massachusetts Amherst.

Assessment of Recovery & Reuse Activities For Industrial Wastewaters In Miscellaneous Sectors

Year 2019, Volume: 2 Issue: 1, 19 - 43, 18.07.2019

Abstract

At the beginning of the industrial revolution and rapid urbanization, it
was thought that the nature has the power of hide the increasing pollution forever
or have the capacity of an endless treatment. However, over time the whole
ecosystem is negatively affected by environmental pollution, activities for
understanding, identifying, emerging issues, and finding solutions to take
measures have gained tremendous importance. Therefore, if we can provide the
right usage of water and soil resources and consider the balance of ecosystems
within the limits of their usages and protect them, 'sustainability' can also
be secured. Protecting water resources in a sustainable way is the only way to
reclaim and reuse waste water. Re-using of waste water reduces fresh water
resources consumption and both the environmental impact of treated waste water
that is discharged can be minimized.



In this study, the literature research was performed for different
sectors such as metal, pulp and paper, pharmaceutical, chemicals industries, in
terms of water consumption, processwater quality, waste water sources,
treatment, reuse of waste water and focused on re-use alternatives.
As a result, when designing plants, their production dynamics must be
taken into account and evaluated. In addition, similar studies should be
conducted to select the most economical treatment and reuse option for
different industrial wastewater. 

References

  • [1] Symposium on Water Consumption and Re-use (2008). İznik Bursa.
  • [2] Töre G. Yıldız, Güngör R. ve Yavuz S., Evaluation of Recovery Efficiency of Denim washing Wastewater by Granular Filtration After Biological Treatment, Corlu/Tekirdag, I.T.U. 12. Industrial Pollution Control Symposium 16-18th June 2010 Journal of Hazardous Materials 153 1142–1148.
  • [3] MEGEP, Food and Beverage Services, Beer Service, ANKARA- 2007.
  • [4] MEGEP, Food Technology, Drinking Water Analysis, 2007
  • [5] URL 1. INDUSTRIAL POLLUTION CONTROL, Official Web Site of Dokuz Eylül University “web.deu.edu.tr”, 2013.[6] Yıldız, G., Orhon, D., Ubay Çokgör, E., İnsel, G. (2005). Characterization and Biological Treatability of Acrylic and Polyamide Fiber Based Carpet Finishing Wastewater, itüdergisi/e, Su Kirlenmesi Kontrolü, Cilt:15, Sayı:1-3, 93-106. [7] Abdel-Halim S. H., Shehata A. M. A., El-Shahat M. F. (2004). Removal of Cadmium Ions from Industrial Waste Water Plants Around Cairo”, Bull. Environ. Contam. Toxicol. 74:78–85.
  • [8] Ghogare P. D. , Gupta S. G. (2012). Microbial Remediation of Polyfilm Manufacturing Industrial Effluent, Water Air Soil Pollut., 223:2641–2649, DOI 10.1007/s11270-011-1056-6.
  • [9] Salman Ashraf, a S., Rauf a M.A. & Fatema H. Abdullah.(2012). A hves-on approach to teaching environmental awareness ve pollutant remediation to undergraduate chemistry students, Research in Science & Technological Education, 30:2, 173-184, DOI:10.1080/02635143.2012.698604.
  • [10] Cliona O’Neill , Freda R Hawkes, Dennis L Hawkes, Nidia D Lourenço, Helena M Pinheiro, Wouter Delée (1999),‘’ Colour in textile effluents – sources, measurement, discharge consents and simulation: a review’’Journal of Chemical Technology and Biotechnology, Volume 74 (1), pp.1009-1018.
  • [11] L. Gurtubaya, I. Da nobeitiab, A. Baronaa, J. Pradob, A. Elías, “Viability study on two treatments for an industrial effluent containing sulphide ve fluoride”, Chemical Engineering Journal 162 (2010) 91–96
  • [12] S. Sivaprakasam, S. Mahadevan, S. Sekar ve S. Rajakumar, 2008, “Biological treatment of tannery wastewater by using salt-tolerant bacterial strains”, doi:10.1186/1475-2859-7-15
  • [13] Padma S. Vankar, Ashish Dwivedi, Rishabh Saraswat (2006),’’ Sodium sulphate as a curing agent to reduce saline chloride ions in the tannery effluent at Kanpur: A preliminary study on techno-economic feasibility’’, Desalination, Volume 201, Issue 1-3pp.14-22.
  • [14] B. Ericsson, B. Hallmans, 1996. “Treatment of saline wastewater for zero discharge at the Debiensko coal mines in Polve”, Desalination 105 (1996) 115-123.
  • [15]Olivier Lefebvre, Rene´ g, 2006, “Treatment of organic pollution in industrial saline wastewater: A literature review”, Francem Water Research 40 (2006) 3671 – 3682.
  • [16] Ben J. Kefford, Ralf B. Schäfer, L. Metzeling, 2012. Risk assessment of salinity ve turbidity in Victoria (Australia) to stream insects, Science of the Total Environment 415 (2012) 61–68.
  • [17] F. Fu, Q. Wang, 2011, Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management 92 (2011) 407-418.
  • [18] R. Gebauer, “Mesophilic anaerobic treatment of sludge from saline fish farm effluents with biogas production”, Bioresource Technology 93 (2004) 155–167.
  • [19] C. Boillot, Y. Perrodin, 2008. Joint-action ecotoxicity of binary mixtures of glutaraldehyde ve surfactants used in hospitals, Ecotoxicology ve Environmental Safety 71 (2008) 252–259.
  • [20] Oyaro, N., Juddy, O., Murago, E.N.M., Gitonga, E., 2007. The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya. Int. J. Food Agric. Environ. 5, 119-121.
  • [21] Paulino, A.T., Minasse, F.A.S., Guilherme, M.R., Reis, A.V., Muniz, E.C., Nozaki, J., 2006. Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. J. Colloid Interface Sci. 301, 479-487.
  • [22] Borba, C.E., Guirardello, R., Silva, E.A., Veit, M.T., Tavares, C.R.G., 2006. Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: experimental and theoretical breakthrough curves. Biochem. Eng. J. 30, 184-191.[23] C Namasivayam, K Kadirvelu,(1999) ‘’ Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid by-product: coirpith’’, Carbon, Volume 37, Issue 1, pp.79-84.
  • [24] Naseem, R., Tahir, S.S., 2001. Removal of Pb(II) from aqueous solution by using bentonite as an adsorbent. Water Res. 35, 3982-3986.
  • [25] Khezami, L., Capart, R., 2005. Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies. J. Hazard. Mater. 123, 223-231.
  • [26] Hongmei Liao, Xiangzhen Kong, Zhuyuan Zhang, Xiaojun Liao, Xiaosong Hu (2010). Modeling the inactivation of Salmonella typhimurium by dense phase carbon dioxide in carrot juice. Food Microbiology 27, 94–100.
  • [27] Jian-Jun f, Maung-Nyunt Wai, Maung-Htun Oo, Fook-Sin Wong, (2002). A feasibility study on the treatment and recycling of a wastewater from metal plating Journal of Membrane Science 208, 213–221.
  • [28] Ku, Y., Jung, I.L., 2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35, 135-142.
  • [29] Özverdi, A., Erdem, M., 2006. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J. Hazard. Mater. 137, 626-632.
  • [30] González-Muñoz, M.J., Rodríguez, M.A., Luquea, S., Álvareza, J.R., 2006. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination 200, 742-744.
  • [31] Prabir Ghosh, Amar Nath Samanta, Subhabrata Ray, (2011), ‘’ Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation’’, Desalination, Volume 266, Issue s 1-3,pp. 213-217.
  • [32] Kang, S.Y., Lee, J.U., Moon, S.H., Kim, K.W., 2004. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56, 141-147.
  • [33] A. Papadopoulos, D. Fatta, K. Parperis, A. Mentzis, K.-J. Haralambous, M. Loizidou,(2004), ‘’ Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods’’, Separation and Purification Technology, Volume 39, Issue 3, pp.181-188.
  • [34] Alyüz, B., Veli, S., 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J. Hazard. Mater. 167, 482-488.
  • [35] Gode, F., Pehlivan, E., 2006. Removal of chromium (III) from aqueous solutions using Lewatit S 100: the effect of pH, time, metal concentration and temperature. J. Hazard. Mater. 136, 330-337.
  • [36] Motsi, T., Rowson, N.A., Simmons, M.J.H., 2009. Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process 92, 42-48.
  • [37] Ostroski, I.C., Barros, M.A.S.D., Silvab, E.A., Dantas, J.H., Arroyo, P.A., Lima, O.C.M., 2009. A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY. J. Hazard. Mater. 161, 1404-1412.
  • [38] Taffarel, S.R., Rubio, J. (2009). On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Miner. Eng. 22, 336-343.
  • [39] Doula, M.K., Dimirkou, A., 2008. Use of of Cu2+ ions from heavily contaminated drinking water samples. J. Hazard. Mater. 151, 738-745.
  • [40] Doula, M.K., 2009. Simultaneous removal of Cu, Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res. 43, 3659-3672.
  • [41] Jusoh, A., Shiung, L.S., Ali, N., Noor, M.J.M.M., 2007. A simulation study of the removal efficiency of granular activated carbon on cadmium and lead. Desalination 206, 9-16.
  • [42] Kang, K.C., Kim, S.S., Choi, J.W., Kwon, S.H., 2008. Sorption of Cu2+ and Cd2+ onto acid- and base-pretreated granular activated carbon and activated carbon fiber samples. J. Ind. Eng. Chem. 14, 131-135.
  • [43] Wang, H.J., Zhou, A.L., Peng, F., Yu, H., Yang, J., 2007. Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). J. Colloid Interface Sci. 316, 277-283.
  • [44] Kabbashi, N.A., Atieh, M.A., Al-Mamun, A., Mirghami, M.E.S., Alam, M.D.Z., Yahya, N., 2009. Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J. Environ. Sci. 21, 539-544.[45] Kuo, C.Y., Lin, H.Y., 2009. Adsorption of aqueous cadmium (II) onto modified multiwalled carbon nanotubes following microwave/chemical treatment. Desalination 249, 792-796.
  • [46] Pillay, K., Cukrowska, E.M., Coville, N.J., 2009. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J. Hazard. Mater. 166, 1067-1075.
  • [47] Li, Y.H., Liu, F.Q., Xia, B., Du, Q.J., Zhang, P., Wang, D.C., Wang, Z.H., Xia, Y.Z., 2010. Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J. Hazard. Mater. 177, 876-880.
  • [48] Kandah, M.I., Meunier, J.L., 2007. Removal of nickel ions from water by multi-walled carbon nanotubes. J. Hazard. Mater. 146, 283-288.
  • [49] El Samrani, A.G., Lartiges, B.S., Villiéras, F., 2008. Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res. 42, 951-960.
  • [50] Chang, Q., Wang, G., 2007. Study on the macromolecular coagulant PEX which traps heavy metals. Chem. Eng. Sci. 62, 4636-4643.
  • [51] Yuan, X.Z., Meng, Y.T., Zeng, G.M., Fang, Y.Y., Shi, J.G., 2008. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloid Surf. 317, 256-261.
  • [52] Landaburu-Aguirre, J., García, V., Pongrácz, E., Keiski, R.L., 2009. The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination 240, 262-269.
  • [53] Sampera, E., Rodrígueza, M., De la Rubia, M.A., Prats, D., 2009. Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep. Purif. Technol. 65, 337-342.
  • [54] Murthy, Z.V.P., Chaudhari, L.B., 2008. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 160, 70-77.
  • [55] Muthukrishnan, M., Guha, B.K., 2008. Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination 219, 171-178.
  • [56] Cséfalvay, E., Pauer, V., Mizsey, P., 2009. Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination 240, 132-142.
  • [57] Ahmad, A.L., Ooi, B.S., 2010. A study on acid reclamation and copper recovery using low pressure nanofiltration membrane. Chem. Eng. J. 56, 257-263.
  • [58] Nguyen, C.M., Bang, S., Cho, J., Kim,K.W., 2009. Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination 245, 82-94.
  • [59] Murthy, Z.V.P., Chaudhari, L.B., 2009. Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using SpieglereKedem model. Chem. Eng. J. 150, 181-187.
  • [60] Cifuentes, L., García, I., Arriagada, P., Casas, J.M., 2009. The use of electrodialysis for metal separation and water recovery from CuSO4-H2SO4- Fe solutions. Sep. Purif. Technol. 68, 105-108.
  • [61] Lambert, J., Avila-Rodriguez, M., Durand, G., Rakib, M., 2006. Separation of sodium ions from trivalent chromium by electrodialysis using monovalent cation selective membranes. J. Membr. Sci. 280, 219-225.
  • [62] Mohammadi, T.,Razmi, A., Sadrzadeh, M., 2004. Effect of operating parameterson Pb2+ separation from wastewater using electrodialysis. Desalination 167, 379-385.
  • [63] S. Wang, A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater, Dyes Pigm. 76 (2008), pp. 714–720.
  • [64] E. Neyens and J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J.Hazard. Mater. 98 (2003), pp. 33–50.
  • [65] R.M. Huang, J.Y. He, J. Zhao, Q. Luo & C.M. Huang, 2011, Fenton–biological treatment of reverse osmosis membrane concentrate from a metal plating wastewater recycle system.
  • [66] Bajpai P., 2010, e-book; Environmentally Friendly Production of Pulp and Paper.[67] Ravi D, Vijayabharathi V, Parthasarathy R and P. Suresh, 2014, Impact of Paper Pulp Industrial Effluent on Soybean Crop, Research Journal of Science and Technology, 6(4): October-December, 2014, 199-202.
  • [68] Holik H. Handbook of paper and board. Germany: Wiley-VCH; 2006.
  • [69] Nemerow NL. Industrial waste treatment. Elsevier Science & Technology Books 0123724937; 2006.
  • [70] Cooling BREF, EC 2001. "Integrated Pollution Prevention ve Control (IPPC) Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems".
  • [71] TUBITAK KAMAG PROJECT HANDBOOK, number 109G083, 2013.
  • [72] D. Pokhrel, T. Viraraghavan, 2004. / Science of the Total Environment 333 (2004) 37–58 Treatment of pulp and paper mill wastewater—a review Department of Environmental and System Engineering, Faculty of Engineering, University of Regina, 3737 Wascana Parkway, Regina, SK, Canada S4S 0A2 Received 2 July 2003; received in revised form 29 January 2004; accepted 7 May 2004
  • [73] Wang LK, Hung YT, Lo HH, Yapijakis C. 2006. Waste treatment in the process industries. Taylor & Francis Group, 978-0-8493-7233-9.
  • [74] N. Buyukkamaci, E. Koken, Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry, Science of the Total Environment 408 (2010) 6070–6078
  • [75] Rintala JA, Puhakka JA. Anaerobic treatment in pulp and paper mill waste management: a review. Bioresour Technol 1994;47:1– 18.
  • [76] Temmink H, Grolle K. Tertiary activated carbon treatment of paper and board industry wastewater. Bioresour Technol 2005;96:1683–9.
  • [77] Amat AM, Arques A, Lo´pez F, Miranda MA. 2005. Solar photo-catalysis to remove paper mill wastewater pollutants. Sol Energy 2005;79:393–401.
  • [78] Savant DV, Abdul-Rahman R, Ranade DR. Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Bioresour Technol 2006;97:1092–104.
  • [79] Catalkaya EC, Kargi F. 2008. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals. J Environ Manage 2008;87:396–404.
  • [80] Yuzhong Zhang, Chunming Ma, Feng Ye, Ying Kong, Hong Li, The treatment of wastewater of paper mill with integrated membrane process, Desalination 236 (2009) 349–356
  • [81] Ahmad AL, Wong SS, Teng TT, Zuhairi A. Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater. Chem Eng J 2008;137:510–7.
  • [82] M. Pizzichini, C. Russo, C. Di Meo, Purification of pulp and paper wastewater, with membrane technology, for water reuse in a closed loop, Desalination 178 (2005) 351–359.
  • [83] M. Kallioinena, S.P. Reinikainenb, J. Nuortila-Jokinena, M. M¨antt¨aria, T. Sutelac, P. Nurminenc, Chemometrical approach in studies of membrane capacity in pulp and paper mill application, Desalination 175 (2005) 87
  • [84] A. Dafinov, J. Font, R. Garcia-Valls, 2005; Processing of black liquors by UF/NF ceramic membranes, Desalination 173 (2005) 83–90.
  • [85] Zhang Y, Ma C, Ye F, Kong Y, Li H. The treatment of wastewater of paper mill with integrated membrane process. Desalination 2009;236:349–56.
  • [86] S.K. Nataraj, S. Sridhar, I.N. Shaikha, D.S. Reddya, T.M. Aminabhavi, Membrane-based microfiltration/electrodialysis hybrid process for the treatment of paper industry wastewater, Separation and Purification Technology 57 (2007) 185–192.
  • [87] Edelmann, 1997; Edelmann, K., Kaijaluoto, S. Karlsson, M., Towards effluent free paper mill, Das Papier, 21. Jahrg., No. 6A, 1997, p. V 138- 145.
  • [88] Mohamed I. Badawy, Rifaat A.Wahaab, A.S. El-Kalliny, Fenton-biological treatment processes for the removal of some pharmaceuticals from industrial wastewater, Journal of Hazardous Materials 167 (2009) 567–574.
  • [89] Guide; Industrial Hazardous Waste Guide, Pharmaceutical Industry.; 2013.
  • [90] Installation Engineering Magazine, 93,2006
  • [91] N.Didem SERT, Color and COD removal in Drug Industry Wastewater by means of Fenton Process; Istanbul University, 2006.
  • [92] Zuccato, E., Calamari, D., Natangelo, M., Fanelli, R., 2000. Presence of therapeutic drugs in the environment. Lancet 355, 1789–1790.
  • [93] Gogate, P.R., Pandit, A.B., 2004. A review of imperative technologies for wastewater treatment II: hybrid methods. Adv. Environ. Res. 8 (3–4), 553–597.
  • [94] Parsons, S., 2004. Advanced Oxidation Processes for Water and Wastewater Treatment. IWA Publishing, London.
  • [95] G. Mascolo, L. Balest, D. Cassano, G. Laera, A. Lopez, A. Pollice, C. Salerno, 2010. Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment, Bioresource Technology 101 (2010) 2585–2591.
  • [96] Xu, W.-H., Zhang, G., Zou, S.-C., Li, X.-D., Liu, Y.-C., 2007. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high performance liquid chromatography electrospray ionization tandem mass spectrometry. Environ. Pollut. 145, 672-679.
  • [97] Baquero, F., Martínez, J.-L., Cantón, R., 2008. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19, 260-265.
  • [98] Martínez, J.L., 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut 157, 2893e2902.
  • [99] Mompelat, S., LeBot, B., Thomas, O., 2009. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 35, 803e814.
  • [100] Díaz-Cruz, M.S., López de Alda, M.J., Barceló, D., 2003. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Anal. Chem. 22, 340-351.
  • [101] Adams, C., Asce, M., Wang, Y., Loftin, K., Meyer, M., 2002; Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 128, 253-260.
  • [102] Göbel, A., McArdell, C.S., Joss, A., Siegrist, H., Giger, W., 2007. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Total Environ. 372, 361-371.
  • [103] Stackelberg, P.E., Gibs, J., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Lippincott, R.L., 2007. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 377, 255-272.
  • [104]Vieno, N.M., Hrkki, H., Tuhkanen, T., Kronberg, L., 2007. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ. Sci. Technol. 41, 5077-5084.
  • [105] Arikan, O.A., 2008. Degradation and metabolization of chlortetracycline during the anaerobic digestion of manure from medicated calves. J. Hazard. Mater. 158, 485-490.
  • [106] Chelliapan, S., Wilby, T., Sallis, P.J., 2006. Performance of an up-flow anaerobic stage reactor (UASR) in the treatment of pharmaceutical wastewater containing macrolide antibiotics. Water Res. 40, 507-516.
  • [107] Acero, J.L., Benitez, F.J., Real, F.J., Roldan, G., 2010; Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices. Water Res. 44, 4158-4170.
  • [108]Navalon, S., Alvaro, M., Garcia, H., 2008. Reaction of chlorine dioxide with emergent water pollutants: products study of the reaction of three b-lactams antibiotics with ClO2. Water Res. 42, 1935-1942.
  • [109]Ikehata, K., Naghashkar, N.J., El-Din, M.G., 2006. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci. Eng. 28, 353-414.
  • [110] Andreozzi, R., Caprio, V., Insola, A., Marotta, R., 1999. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51-59.
  • [111] Gunten, U., 2003. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 37, 1443-1467.
  • [112] Andreozzi, R., Canterino, M., Marotta, R., Paxeus, N., 2005. Antibiotic removal from wastewaters: the ozonation of amoxicillin. J. Hazard. Mater. 122, 243-250.
  • [113] Balcioglu, I.A., Ötker, M., 2003. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere 50, 85-95.
  • [114] Arslan-Alaton, I., Dogruel, S., 2004. Pre-treatment of penicillin formulation effluent by advanced oxidation processes. J. Hazard. Mater. B112, 105-113.
  • [114-a] Arslan-Alaton, I., Gurses, F., 2004. Photo-Fenton-like and Fenton-like oxidation of Procaine Penicillin G formulation effluent. J. Photochem. Photobiol. A 165, 165e175.
  • [115] Cokgor, E.U., Arslan-Alaton, I., Karahan, O., Dogruel, S., Orhon, D., 2004. Biological treatability of raw and ozonated penicillin formulation effluent. J. Hazard. Mater. B116, 159-166.
  • [116] Arslan-Alaton, I., Caglayan, A.E., 2005. Ozonation of procaine penicillin G formulation effluent. Part I: Process optimization and kinetics. Chemosphere 59, 31e39.
  • [117] Arslan-Alaton, I., Caglayan, A.E., 2006. Toxicity and biodegradability assessment of raw and ozonated procaine penicillin G formulation effluent. Ecotoxicol. Environ. Saf. 63, 131-140.
  • [118] Qiang, Z., Adams, C., Surampalli, R., 2004. Determination of ozonation rate constants for Lincomycin and Spectinomycin. Ozone Sci. Eng. 26, 525-537.
  • [118-a]Elmolla, E., Chaudhuri, M., 2009. Improvement of biodegradability of synthetic amoxicillin wastewater by photo-Fenton process. World Appl. Sci. J. 5, 53-58.
  • [118-b] Trovó, A.G., Melo, S.A.S., Nogueira, R.F.P., 2008. Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process e application to sewage treatment plant effluent. J. Photochem. Photobiol. A 198, 215e220.
  • [119] Rozas, O., Contreras, D., Mondaca, M.A., Pérez-Moya, M., Mansilla, H.D., 2010. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions. J. Hazard. Mater. 177, 1025-1030.
  • [120] Shemer, H., Kunukcu, Y.K., Linden, K.G., 2006. Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere 63, 269-276.
  • [121] Bautitz, I.R., Nogueira, R.F.P., 2007. Degradation of tetracycline by photo-Fenton process e solar irradiation and matrix effect. J. Photochem. Photobiol. A 187, 33-39.
  • [122] Bobu, M., Yediler, A., Siminiceanu, I., Schulte-Hostede, S., 2008. Degradation studies of ciprofloxacin on a pillared iron catalyst. Appl. Catal. B 83, 15-23.
  • [123] Guinea, E., Brillas, E., Centellas, F., Cañizares, P., Rodrigo, M.A., Sáez, C., 2009. Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation: a comparison. Water Res. 43, 2131-2138.
  • [124] Gu, González, O., Sans, C., Esplugas, S., 2007. Sulfamethoxazole abatement by photo- Fenton. Toxicity, inhibition and biodegradability assessment of intermediates. J. Hazard. Mater. 146, 459e464.
  • [125] Trovó, A.G., Nogueira, R.F.P., Agüera, A., Sirtori, C., Fernández-Alba, A.R., 2009. Photodegradation of sulfamethoxazole in various aqueous media: persistence, toxicity and photoproducts assessment. Chemosphere 77, 1292-1298.
  • [125-a] Dantas, R.F., Contreras, S., Sans, C., Esplugas, S., 2008. Sulfamethoxazole abatement by means of ozonation. J. Hazard. Mater. 150, 790-794.
  • [126] Pérez-Moya, M., Graells, M., Castells, G., Amigó, J., Ortega, E., Buhigas, G., Pérez, L.M., Mansilla, H.D., 2010. Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Res. 44, 2533-2540.
  • [127] Hirose, J., Kondo, F., Nakano, T., Kobayashi, T., Hiro, N., Ando, Y., Takenaka, H., Sano, K., 2005. Inactivation of antineoplastics in clinical wastewater by electrolysis. Chemosphere 60, 1018-1024.
  • [128] Jara, C.C., Fino, D., Specchia, V., Saracco, G., Spinelli, P., 2007. Electrochemical removal of antibiotics from wastewater. Appl. Catal. B 70, 479-487.
  • [128-a] Panizza, M., Cerisola, G., 2009. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 109, 6541-6569.
  • [129] Estevinho, B.N., Martins, I., Ratola, N., Alves, A., Santos, L., 2007. Removal of 2,4- dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant. J. Hazard. Mater. 143, 535-540.
  • [130] Crisafully, R., Milhome, M.A.L., Cavalcante, R.M., Silveira, E.R., De Keukeleire, D., Nascimento, R.F., 2008. Removal of some polycyclic aromatic hydrocarbons from petrochemical wastewater using low-cost adsorbents of natural origin. Bioresour. Technol. 99, 4515-4519.
  • [131] Chen, W.-R., Huang, C.-H., 2010. Adsorption and transformation of tetracycline antibiotics with aluminium oxide. Chemosphere 79, 779-785.
  • [132] Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., Ismadji, S., 2009. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanism, isotherms and kinetics. Water Res. 43, 2419-2430.
  • [133] Méndez-Díaz, J.D., Prados-Joya, G., Rivera-Utrilla, J., Leyva-Ramos, R., Sánchez- Polo, M., Ferro-García, M.A., Medellín-Castillo, N.A., 2010. Kinetic study of the adsorption of nitroimidazole antibiotics on activated carbons in aqueous phase. J. Colloid Interf. Sci. 345, 481-490.
  • [134] Kim, S.H., Shon, H.K., Ngo, H.H., 2010. Adsorption characteristics of antibiotics trimethoprim on powered and granular activated carbon. J. Ind. Eng. Chem. 16, 344-349.
  • [135] Li, S.-Z., Li, X.-Y., Wang, D.-Z., 2004. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Sep. Purif. Technol. 34, 109-114.
  • [136] Kosutic, K., Dolar, D., A_sperger, D., Kunst, B., 2007. Removal of antibiotic from model wastewater by RO/NF membrane. Sep. Purif. Technol. 53, 244-249.
  • [137] Radjenovic, J., Petrovi_c, M., Ventura, F., Barceló, D., 2008. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 42, 3601-3610.
  • [138] S. Kim, S.Lee, S. Hong, Y. Ohb, M. Seoulb, J. Kweonc, T. Kimc, 2009, Biofouling of reverse osmosis membranes: Microbial quorum sensing and fouling propensity, Volume 247, Issues 1–3, October 2009, Pages 303–315
  • [139] Jawad H. Al-Rifai, Candace L. Gabelish, Andrea I. Scha¨fer, 2007, Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia, Chemosphere 69 (2007) 803–815.
  • [140] Xu, T., 2005. Ion exchange membranes: state of their development and perspective. J. Membr. Sci. 263, 1e29.
  • [141] Nagarale, R.K., Gohil, G.S., Shahi, V.K., 2006. Recent developments on ion-exchange membranes and electro-membrane processes. Adv. Colloid Interf. Sci. 119, 97e130.
  • [142] Dickert, C., 2007. Ion exchange. In: Kirk, E.R., Othmer, D.F., Kroschwitz, J.I., Howe-Grant, M. (Eds.), KirkeOthmer Encyclopedia Chemical Technology. John Wiley & Sons, New York.
  • [143] Klavarioti, M.,Mantzavinos, D., Kassinos, D.,2009. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int 35, 402-417.
  • [144] Sánchez-Polo, M., Rivera-Utrilla, J., Prados-Joya, G., Ferro-García, M.A., Bautista- Toledo, I., 2008. Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon systems. Water Res. 42, 4163-4171.
  • [145] Zhang, G., Ji, S., Xi, B., 2006. Feasibility study of treatment of amoxicillin wastewater with a combination of extraction, Fenton oxidation and reverse osmosis. Desalination 196, 32-42.
  • [146] Tekin, H., Bilkay, O., Ataberk, S.S., Balta, T.H., Ceribasi, I.H., Sanin, F.D., Dilek, F.B., Yetis, U., 2006. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J. Hazard. Mater 136, 258-265.
  • [147] Augugliaro, V., Gárcia-López, E., Loddo, V., Malato-Rodríguez, S., Maldonado, I., Marcì, G., Molinari, R., Palmisano, L., 2005. Degradation of lincomycin in aqueous medium: coupling of solar photocatalysis and membrane separation. Sol. Energy 79, 402-408.
  • [148]Ötker, H.M., Akmehmet-Balcio_glu, I., 2005. Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. J. Hazard. Mater. 122, 251-258.
  • [149] Sirtori, C., Zapata, A., Oller, I., Gernjak, W., Agüera, A., Malato, S., 2009. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Res. 43, 661-668.
  • [150] Li. Xu, H. Zhao, S. Shi, G. Zhang, J. Ni, 2008; Electrolytic treatment of C.I. acid orange 7 in aqueous solution using a three-dimensional electrode reactor, Dyes Pigments 77 (2008) 158–164, doi:http://dx.doi.org/10.1016/j.dye- pig.2007.04.004.
  • [151] URL 2. http://www.invest.gov.tr/ENUS/SECTORS/Pages/Chemical.aspx, 2015
  • [152] URL 3. http://en.wikipedia.org/wiki/Chemical_industry, 2015
  • [153] URL 4. http://www.jurby.com/en/industries-we-serve/chemical-industry-/, 2015
  • [154] URL 11. https://www.nibusinessinfo.co.uk/content/water-use-and-efficiency-chemical-manufacturing, 2015
  • [155] URL 5. http://chemwater.eu/index.php/Chemistry-Water-synergies/Chemistry Watersynergies.html, 2015
  • [156] URL 6. http://www.aqua-tools.com/uk/industrial_process_water.php, 2015.
  • [157]Water Pollution Control Federation, 1989
  • [158] URL 7. http://www.waterworld.com/articles/iww/print/volume-12/issue-05/feature-editorial/water-treatment-chemical-and-pharmaceutical-industries.html, 2015.
  • [159] G. Allen Burton, Jr., Robert Pitt, 2001. Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers. New York: CRC/Lewis Publishers. ISBN 0-87371-924-7. Chapter 2.
  • [160]Schueler, Thomas R., 2000 "Cars Are Leading Source of Metal Loads in California." Reprinted in The Practice of Watershed Protection, Center for Watershed Protection. Ellicott City, MD.
  • [161] URL 8. http://en.wikipedia.org/wiki/Water_pollution, 2015.
  • [162] EPA, 2009; “Illness Related to Sewage in Water.” Accessed February 20, 2009. EPA, 2004; "Report to Congress: Impacts and Control of CSOs and SSOs." August 2004. Document No. EPA-833-R-04-001.
  • [163] URL 9. http://en.wikipedia.org/wiki/Water_pollution, 2015.
  • [164] URL 10. http://www.water-pollution.org.uk/chemical.html, 2015URL 11.
  • [165] Akbulut H.Y., Karpuzcu M., Cihan F.,A. Dimoglo, 2003; Petrochemical wastewater treatment by means of clean electrochemical technologies Environmental Engineers, 5th National Environmental Engineering Congress, Mersin, s. 164-178.
  • [166] Sponza D.T. (2003). Investigation of extracellular polymer substances (eps) and physicochemical properties of different activated sludge flocs under steady-state conditions, Enzyme Microbiology Technology, 32, 375-385.
  • [167] Bautista P., A F Mohedano, J A Casas, J A Zazo and J J Rodriguez Ingenier´ıa Qu´ımica, 2008. Universidad Auto´ noma de Madrid, Crta. de Colmenar Km.15, 28049 Madrid, Spain J Chem Technol Biotechnol 83:1323–1338 (2008), Review An overview of the application of Fenton oxidation to industrial wastewaters treatment.
  • [168] Barbusinski K and Filipek K, Use of Fenton’s reagent for removal of pesticides from industrial wastewater. 2001. Pol J Environ Stud 10:207–212 (2001).
  • [169] Barbusinski K, 2005. Toxicity of industrial wastewater treated by Fenton’s reagent. Pol J Environ Stud 14:11–16 (2005).
  • [170] Sekaran, G; Karthikeyan, S; Evvie, C; Boopathy, R; Maharaja, P, 2013; Oxidation of refractory organics by heterogeneous Fenton to reduce organic load in tannery wastewater. Clean Technologies and Environmental Policy 15.2 (Apr 2013): 245-253.
  • [171] Hayo, M.G., van der Werf, 1996. Assessing the impact of pesticides on the environment. Agric. Ecosyst. Environ. 60, 81–96.
  • [172] M.M. Ballesteros Martı´na, J.A. Sa´nchez Pe´reza,*, J.L. Casas Lo´pez, I. Ollerb, S. Malato Rodrı´guezb , Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation , water r e s e arch 4 3 ( 2 0 0 9 ), 6 5 3 – 6 6 0
  • [173] Lafi, W.K., Al-Qodah, Z., 2006. Combined advanced oxidation and biological treatment process for the removal of pesticides from aqueous solutions. J. Hazard. Mater. 137, 489–497.
  • [174] Smita Masid, Sujata Waghmare, Nitin Gedam, Rohit Misra, Rita Dhodapkar, Tapas Nandy, N.N. Rao Desalination 259, 2010; 192–196, Impact of electrooxidation on combined physicochemical and membrane treatment processes: Treatment of high strength chemical industry wastewater.
  • [175] Nitin Gedam, Nageswara Rao Neti, 2014; Carbon attrition during continuous electrolysis in carbon bed based three-phase three-dimensional electrode reactor: Treatment of recalcitrant chemical industry wastewater, Journal of Environmental Chemical Engineering 2 (2014) 1527–1532.
  • [176] Y. Xiong, C. He, H.T. Karlsson, X. Zhu, 2003; Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol, Chemosphere 50 (2003) 131–136, doi: http://dx.doi.org/10.1016/S0045-6535(02)00609-4.
  • [177] X. Wu, X. Yang, D. Wu, R. Fu, 2008; Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor, Chem. Eng. J. 138 (2008) 47–54, doi:http://dx.doi.org/ 10.1016/j.cej.2007.05.027.
  • [178] Y. Deng, J.D. Englehardt, 2007; Electrochemical oxidation for landfill leachate treatment, Waste Manage. 27 (2007) 380–388, doi:http://dx.doi.org/10.1016/j. wasman.2006.02.004.
  • [179] Kyung-Nan Mın, September 2006; Volatıle organic compound control in chemical industry wastewater using a membrane bioreactor: emission reduction and microbıal characterıiation, University of Massachusetts Amherst.
There are 179 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Reviews
Authors

Günay Yıldız Töre 0000-0002-7899-3917

Reyhan Ata This is me 0000-0002-2760-6649

Publication Date July 18, 2019
Submission Date May 21, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1