Research Article
BibTex RIS Cite

Soil chemistry and microbial activity after a surface fire in a mixed temperate forest

Year 2018, Volume: 6 Issue: 4, 1 - 13, 26.12.2018
https://doi.org/10.31195/ejejfs.451884

Abstract

Fire-affected soils have recently received more attention
in soil science because some of the atmospheric CO2 emissions have
directly been driven from soils during fires and climate change has increased
fire frequency in many ecosystems of Earth. However, low-intensity surface
fires and their effects on soil properties have been relatively less studied in
comparison to moderate to high-intensity crown fires. In this study, the effect
of a surface fire on the chemical and biological properties of soil with a
thick organic layer was investigated in a mixed forest stand dominated by Castanea sativa, Fagus orientalis and Pinus
nigra ssp. pallasiana
in Bursa Province, Turkey. Soil samples were taken from
burned and unburned (control) sites in three periods: December 2011, July 2012,
and November 2013. Samples were analyzed to determine some chemical and
biological properties in the soil. We tested the effect of fire and period on
each variable by two-way ANOVA analysis. The results indicated that Nt and OM
were not affected by fire, while C / N ratio decreased. The difference between the
periods was significant as regards OM and acid phosphatase enzyme activity. Fire
resulted in a significant increase in soil pH, Ca, Mg and no significant change
in P2O5. Although we found that surface fires limited the
effect on soil properties, we concluded that there might be positive interactions
between increased available nutrients in the soil and the burning of soil with
relatively low severity. Prescribed fire can be proposed as a management tool to
mitigate fire risks and short-time enrichment of available soil nutrients in
these ecosystems.


References

  • Acea, M.J., Carballas, T. (1996). Changes in physiological groups of microorganisms in soil following wildfire. FEMS Microbiology Ecology, 20, 33-39.
  • Akburak, S., Son, Y., Makineci, E., Çakır, M. (2017). Impacts of low-intensity prescribed fire on microbial and chemical properties in a Quercus frainetto forest. Journal of Forestry Research, 29, 687-696.
  • Altun, L., Bilgili, E., Sağlam, B., Küçük, Ö., Yılmaz, M., Tüfekçioglu, A. (2004). Soil organic matter, soil pH and soil nutritient dynamics in forest stands after fire. In: Proceedings of the International Soil Congress (ISC) on Natural Resource Management for Sustainable Development, Erzurum.
  • Barreiro, A., Lombao, A., Martín, A., Carballas, T., Fonturbel, M.T., Vega, J.A., Fernández, C., Díaz-Raviña, M. (2015). Short-term effects of a wildfire on soil properties in Fragas do Eume Natural Park (Galicia, NW Spain), Flamma 6, 61-64.
  • Bilen, S. (2010). Effect of cement dust pollution on microbial properties and enzyme activities in cultivated and no-till soils. African Journal of Microbiological Research, 4 (22), 2418-2425.
  • Boydak, M., Eler, Ü., Pehlivan, N. (1996). The effects of prescribed fire and some other foctors on succeed in regeneration of Antalya-Elmalı region cedrus. Technical Report, 2. Southwest Anotolia Forest Research Institute Publications, Antalya.
  • Brown, P.M., Kaufmann, M.R., Sheppard, W.D (1999). Long-term landscape patterns of fire events in a montane ponderosa pine forest of Central Colorado. Landsc Ecol, 14: 513-532.
  • Campbell, G.S., Jungbauer, J.D. Jr, Bristow, K.L., Hungerford, R.D. (1995). Soil temperature and water content beneath a surface fire. Soil Science, 159: 363-374. Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143:1-10.
  • Clarholm, M. (1993). Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizer. Biology and Fertility of Soils, 8, 128–133.
  • Cole, D. (1995). Soil nutrient supply in natural and managed forests. Plant and Soil, 168, 43-53.
  • Çepel, N. (1975). Orman Yangınlarının Mikroklima ve Toprak Özellikleri Üzerine Yaptığı Etkiler (The effects of forest fires on microclimate and soil properties). İstanbul Üniversitesi. Orman Fakültesi Dergisi (Journal of Faculty of Forestry), 1, 71-93.
  • Dick, W.A., Tabatabai, M.A. (1992). Significance and Potential uses of soil enzymes. In: Meeting, F.B. (Ed.), Soil microbial ecology, applications in agricultural and environmental management, Marcel Dekker, New York: pp. 95–125. Dorta Almenar, I., Navarro Rivero, F.J., Arbelo, C.D., Rodríguez, A., and Notario del Pino, J., (2015). The temporal distribution o water-soluble nutrients from high mountain soils following within legume scrubland o Tenerife, Canary Islands, Spain. Catena, 135, 393-400.
  • Durán, J., Rodríguez, A, Fernández-Palacios, J.M., Gallardo, A. (2008). Changes in soil N and P availability in a Pinus canariensis fire chronosequence. Forest Ecology and Management, 256: 384-387.
  • Eron, Z. (1977). Heating effects on forest soil physical properties and subsequent seedling growth. PhD, University of Montana, USA.
  • Eron, Z. ve Gürbüzer, E. (1988). The relationships between changes in soil properties and generation growing of red pine with the wildfire in Marmaris, 1979. Technical Report. Forest Research Institute, Ankara.
  • Esquilin, A.E.J., Stromberger, M.E., Shepperd, W.D. (2008). Soil scarification and wildfire interactions and effects on microbial communities and carbon. Soil Science and Society of America Journal, 72, 111-118.
  • Finzi, A.C., Canham, C.D., Breemen, N.V. (1998). Canopy tree-soil interactıons within temperate forests: specıes effects on pH and cations. Ecological Applications, 8, 447–454.
  • Fisher, R., Binkley, D. (2000). Ecology and Management of Forest Soils, John Wiley & Sons Inc. USA, pp. 241-261.
  • Frelich, L.E. (2002). Forest dynamics and disturbance regimes: Studies from temperate evergreen-decidious forests. Cambridge University Press, New York.
  • Giardina, C.P., Sanford, Jr.R.L., Dockersmith, I.C., Jaramillo, V.J. (2000). The effects of slash burning on ecosystem nutrients during the land preparation phase of shifting cultivation. Plant and Soil, 220, 247–260.
  • Gürlevik, N., Özkan, K., Gülcü, S. (2009). Effects of prescribed burning and mechanical site preparation on soil properties in a kermes oak field in Isparta region. Turkish Journal of Forestry, A (1), 24-37.
  • Hernandez, T., Garcia, C., Reinhardt, I. (1997). Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soil. Biology and Fertility of Soils, 25, 109-116.
  • Kantarcı, M.D., Parlakdağ, S., Pehlivan, N. (1986). Sedir Ormanlarının gençleştirilmesinde yangın kültürünün kullanımı ve ekolojik yorumu. Journal of the Faculty of Forestry, 36, 22-43.
  • Kantarcı, M.D. (2000). Toprak İlmi, İstanbul Üniversitesi Orman Fakültesi Yayınları, İstanbul.
  • Kaptanoğlu Berber, A.S. (2014). Wildfire effects on soil microbial biomass and soil respiration. 9th International Soil Congress on "The Soul of Soil and Civilization". 14-16 October, 2014, Side, Antalya/Turkey.
  • Kara, Ö., Bolat, I. (2009). Short-term effects of wildfire on microbial biomass and abundance in black pine plantation soils in Turkey. Ecological Indicators, 9, 1151-1155.
  • Keesstra, S.D., Bourna, J., Wallinga, J., Tittonell, P., Smith, P., Cerdá, A., Montanarella, L., Quinton, J.N., Pachepsky, Y., van der Putten, W.H., Bardgett, R.D., Moolenear, S., Mol, G., Jansen, B., Fresco, L.O. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, Soil, 2, 111-128.
  • Khanna, P.K., Raison, R.J., Falkiner, R.A. (1994). Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils. Forest Ecology and Management, 66, 107-125.
  • Knoepp, J.D., Vose, J.M., Swank, W.T. (2004). Long-term soil responses to site preparation burning in the southern appalachians. Forest Science, 50, 540-550.
  • Kutiel, P., Naveh, Z. (1987). Soil properties beneath Pinus halepensis and Quercus calliprinos Trees on burned and unburned mixed forest on Mt. Carmel, Israel. Forest Ecology and Management, 20, 11-24.
  • Krämer, S., Green, D.M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32, 179-188.
  • Kutiel, P., Shaviv, A. (1992). Effects of soil type, plant composition and leaching on soil Nutrients following a simulated forest fire. Forest Ecology and Management, 53, 329-343.
  • Mc Bride, R.A., Shrive, S.C., Gordon, A.M. (1990). Estimating forest soil quality from terrain measurements of apparent electrical conductivity. American Society of Agronomy, 54, 290-293.
  • Matlack, G.R. (2013). Reassessment of the use of fire as a management tool in deciduous forests of eastern North America. Conservation Biology, 27, 916–926.
  • Mol G and Keesstra SD (2012). Soil science in a changing World. Cur Opin Environ Sustainability, 4, 473-477.Neff, J.C., Harden, J.W., Gleixener, G. (2005). Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Canadian Journal of Forest Research, 35, 2178-2187.
  • Neyisçi, T. (1989). Kızılçam orman ekosistemlerinde denetimli yakmanın toprak kimyasal özellikleri ve fidan gelişimi üzerine etkileri. Ormancılık Araştırma Enstitüsü Yayınları Teknik Bülten Serisi, Ankara.
  • Neyişçi, T., Şirin, G., Sarıbaşak, H. (2002). Batı Akdeniz Bölgesinde orman yangını tehlikesinin düşürülmesinde denetimli yakma tekniğinin uygulanma olanakları. Türkiye Ormancılar Derneği Yayını, 2, Ankara.
  • Okur, N., Altındişli, A., Çengel, M., Göçmez, S., Kayıkçıoğlu, H.H. (2009). Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems. Turkish Journal of Agricultural Forestry, 33, 413-423.
  • Özdamar, K. (2004). Paket Programlar ile İstatistiksel Veri Analizi. Kaan Yayınevi, Eskişehir.
  • Perala, D.A., Alban, D.H. (1982). Rates of forest floor decomposition and nutrient turnover in aspen, pine, and spruce stands on two soils. USDA For. Serv., North Central Forest Exp. Sta., St. Paul, MN., USA.
  • Pereira, P., Cerda, A., Ubeda, X., Mataix-Solera, J., Martin, D., Jordan, A.,Burguet, M. (2012). Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes. Solid Earth Discussions, 4, 1545-1584.
  • Quilchano, C., Marañón, T. (2002). Dehydrogenase activity in Mediterranean forest soils. Biological Fertility of Soil, 35, 102–107.
  • Quintero-Gradilla, S.D., García-Oliva, F., Cuevas-Guzmán, R., Jardel-Peláez, E.J., Martínez-Yrizar, A. (2015). Soil Carbon and Nutrient Recovery after high-severity Wildfire in Mexico. Fire Ecology, 11, 45-61.
  • Raison, R.J., Keith, H., Khanna, P.K. (1990). Effects of fire on the nutrient-supplying capacity of forest soils. Dyck WJ, and CA Mees (eds.), In Proceedings IEA/BE Workshop, Impact of Intensive Harvesting on Forest Site Productivity, Forest Research Institute, Rotorua, South Island, New Zealand, p. 39-54.
  • Schoch, P., Bınkley, D. (1986). Prescribed burning increased nitrogen availability in a mature loblolly pine stand. Forest Ecological Management, 14, 13-22.
  • Swallow, M., Quideau, S.A., MacKenzie, M.D., Kishcuk, B.E. (2009). Microbial community structure and function: The effect of sivicultural burning and topographic variability in northern Alberta. Soil Biology and Biochemistry, 41, 770-777.
  • Aşkın, T., Kızılkaya, R. (2006). Assessing spatial variability of soil enzyme activities in pasture topsoils using geostatistics. European Journal of Soil Biology 42, 230-237.
  • Tavşanoğlu, Ç., Gürkan, B. (2010). Physical and chemical properties of the soils at burned and unburned Pinus brutia Ten. forest sites in the Marmaris region. Hacettepe Journal of Biology and Chemistry, 38: 71-76.
  • Tecator (1987). Determination of Kjeldahl nitrogen content with the Kjeltec Auto 1030 Analyzer. Application Note, AN 30/87, Hönagäs, Sweden.
  • Tecimen, H.B. and Sevgi, O. (2011). Heating induced changes in mineral nitrogen and organic carbon in relation with temperature and time. Journal of Environmental. Biology, 32, 295-300.
  • Trabaud, L. (1983) The effects of different fire regimes on soil nutrient levels in Quercus coccifera garrigue. In: Kruger, F.J., Mitchell, D.T., Jarvis, J.U.M. (Eds). Mediterranean-type ecosystems: role of nutrients. Springer, Berlin Heidelberg New York, pp. 233-243.
  • TS 8335 ISO 10693 (1996). Toprak kalitesi -Karbonat Tayini - Volumertik Yöntem. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.TS 8336 (1990). Topraklar - Organik Madde Tayini. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • TS 8338 (1990). Topraklar - Fosfor Tayini - Modifiye Bray ve Krutz Yöntemi No 1 Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • TS 8341 (1990). Topraklar - Potasyum Amonyum Asetat Yöntemi. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • TS ISO 10390 (2013). Toprak kalitesi - pH tayini. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • TS ISO 11265 (1996). Toprak kalitesi - Elektiriksel Öziletkenlik tayini. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • TS ISO 11465 (1997). Toprak Kalitesi - Kütle Esasına Göre Kuru Madde ve Su Muhtevasının Tayini - Gravimetrik Yöntem. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • Turgay, O.C., Lumbanraja, J., Yusnaini, S., Nonaka, M. (2002). Effect of land degradation on soil microbial biomass in a hilly area of south Sumatra, Indonesia. Soil Sci Plant Nut, 48, 769-774.
  • Villar, M.C., Petrikova, V., Diaz-Ravina, M., Carballas, T. (2004). Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation. Geoderma, 122, 73-82.
  • White, C.S., (1986). Effects of prescribed fire on rates of decomposition and nitrogen mineralization in a ponderosapine ecosystem. Biology and Fertility of Soils, 2: 87-95.
  • Yıldız, O., Esen, D., Sargıncı, M. and Toprak, B. (2010). Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia, Ten) Ecosystems. Journal of Environmental Biology, 31, 11-13.
Year 2018, Volume: 6 Issue: 4, 1 - 13, 26.12.2018
https://doi.org/10.31195/ejejfs.451884

Abstract

References

  • Acea, M.J., Carballas, T. (1996). Changes in physiological groups of microorganisms in soil following wildfire. FEMS Microbiology Ecology, 20, 33-39.
  • Akburak, S., Son, Y., Makineci, E., Çakır, M. (2017). Impacts of low-intensity prescribed fire on microbial and chemical properties in a Quercus frainetto forest. Journal of Forestry Research, 29, 687-696.
  • Altun, L., Bilgili, E., Sağlam, B., Küçük, Ö., Yılmaz, M., Tüfekçioglu, A. (2004). Soil organic matter, soil pH and soil nutritient dynamics in forest stands after fire. In: Proceedings of the International Soil Congress (ISC) on Natural Resource Management for Sustainable Development, Erzurum.
  • Barreiro, A., Lombao, A., Martín, A., Carballas, T., Fonturbel, M.T., Vega, J.A., Fernández, C., Díaz-Raviña, M. (2015). Short-term effects of a wildfire on soil properties in Fragas do Eume Natural Park (Galicia, NW Spain), Flamma 6, 61-64.
  • Bilen, S. (2010). Effect of cement dust pollution on microbial properties and enzyme activities in cultivated and no-till soils. African Journal of Microbiological Research, 4 (22), 2418-2425.
  • Boydak, M., Eler, Ü., Pehlivan, N. (1996). The effects of prescribed fire and some other foctors on succeed in regeneration of Antalya-Elmalı region cedrus. Technical Report, 2. Southwest Anotolia Forest Research Institute Publications, Antalya.
  • Brown, P.M., Kaufmann, M.R., Sheppard, W.D (1999). Long-term landscape patterns of fire events in a montane ponderosa pine forest of Central Colorado. Landsc Ecol, 14: 513-532.
  • Campbell, G.S., Jungbauer, J.D. Jr, Bristow, K.L., Hungerford, R.D. (1995). Soil temperature and water content beneath a surface fire. Soil Science, 159: 363-374. Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143:1-10.
  • Clarholm, M. (1993). Microbial biomass P, labile P, and acid phosphatase activity in the humus layer of a spruce forest, after repeated additions of fertilizer. Biology and Fertility of Soils, 8, 128–133.
  • Cole, D. (1995). Soil nutrient supply in natural and managed forests. Plant and Soil, 168, 43-53.
  • Çepel, N. (1975). Orman Yangınlarının Mikroklima ve Toprak Özellikleri Üzerine Yaptığı Etkiler (The effects of forest fires on microclimate and soil properties). İstanbul Üniversitesi. Orman Fakültesi Dergisi (Journal of Faculty of Forestry), 1, 71-93.
  • Dick, W.A., Tabatabai, M.A. (1992). Significance and Potential uses of soil enzymes. In: Meeting, F.B. (Ed.), Soil microbial ecology, applications in agricultural and environmental management, Marcel Dekker, New York: pp. 95–125. Dorta Almenar, I., Navarro Rivero, F.J., Arbelo, C.D., Rodríguez, A., and Notario del Pino, J., (2015). The temporal distribution o water-soluble nutrients from high mountain soils following within legume scrubland o Tenerife, Canary Islands, Spain. Catena, 135, 393-400.
  • Durán, J., Rodríguez, A, Fernández-Palacios, J.M., Gallardo, A. (2008). Changes in soil N and P availability in a Pinus canariensis fire chronosequence. Forest Ecology and Management, 256: 384-387.
  • Eron, Z. (1977). Heating effects on forest soil physical properties and subsequent seedling growth. PhD, University of Montana, USA.
  • Eron, Z. ve Gürbüzer, E. (1988). The relationships between changes in soil properties and generation growing of red pine with the wildfire in Marmaris, 1979. Technical Report. Forest Research Institute, Ankara.
  • Esquilin, A.E.J., Stromberger, M.E., Shepperd, W.D. (2008). Soil scarification and wildfire interactions and effects on microbial communities and carbon. Soil Science and Society of America Journal, 72, 111-118.
  • Finzi, A.C., Canham, C.D., Breemen, N.V. (1998). Canopy tree-soil interactıons within temperate forests: specıes effects on pH and cations. Ecological Applications, 8, 447–454.
  • Fisher, R., Binkley, D. (2000). Ecology and Management of Forest Soils, John Wiley & Sons Inc. USA, pp. 241-261.
  • Frelich, L.E. (2002). Forest dynamics and disturbance regimes: Studies from temperate evergreen-decidious forests. Cambridge University Press, New York.
  • Giardina, C.P., Sanford, Jr.R.L., Dockersmith, I.C., Jaramillo, V.J. (2000). The effects of slash burning on ecosystem nutrients during the land preparation phase of shifting cultivation. Plant and Soil, 220, 247–260.
  • Gürlevik, N., Özkan, K., Gülcü, S. (2009). Effects of prescribed burning and mechanical site preparation on soil properties in a kermes oak field in Isparta region. Turkish Journal of Forestry, A (1), 24-37.
  • Hernandez, T., Garcia, C., Reinhardt, I. (1997). Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soil. Biology and Fertility of Soils, 25, 109-116.
  • Kantarcı, M.D., Parlakdağ, S., Pehlivan, N. (1986). Sedir Ormanlarının gençleştirilmesinde yangın kültürünün kullanımı ve ekolojik yorumu. Journal of the Faculty of Forestry, 36, 22-43.
  • Kantarcı, M.D. (2000). Toprak İlmi, İstanbul Üniversitesi Orman Fakültesi Yayınları, İstanbul.
  • Kaptanoğlu Berber, A.S. (2014). Wildfire effects on soil microbial biomass and soil respiration. 9th International Soil Congress on "The Soul of Soil and Civilization". 14-16 October, 2014, Side, Antalya/Turkey.
  • Kara, Ö., Bolat, I. (2009). Short-term effects of wildfire on microbial biomass and abundance in black pine plantation soils in Turkey. Ecological Indicators, 9, 1151-1155.
  • Keesstra, S.D., Bourna, J., Wallinga, J., Tittonell, P., Smith, P., Cerdá, A., Montanarella, L., Quinton, J.N., Pachepsky, Y., van der Putten, W.H., Bardgett, R.D., Moolenear, S., Mol, G., Jansen, B., Fresco, L.O. (2016). The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals, Soil, 2, 111-128.
  • Khanna, P.K., Raison, R.J., Falkiner, R.A. (1994). Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils. Forest Ecology and Management, 66, 107-125.
  • Knoepp, J.D., Vose, J.M., Swank, W.T. (2004). Long-term soil responses to site preparation burning in the southern appalachians. Forest Science, 50, 540-550.
  • Kutiel, P., Naveh, Z. (1987). Soil properties beneath Pinus halepensis and Quercus calliprinos Trees on burned and unburned mixed forest on Mt. Carmel, Israel. Forest Ecology and Management, 20, 11-24.
  • Krämer, S., Green, D.M. (2000). Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in a semiarid woodland. Soil Biology and Biochemistry, 32, 179-188.
  • Kutiel, P., Shaviv, A. (1992). Effects of soil type, plant composition and leaching on soil Nutrients following a simulated forest fire. Forest Ecology and Management, 53, 329-343.
  • Mc Bride, R.A., Shrive, S.C., Gordon, A.M. (1990). Estimating forest soil quality from terrain measurements of apparent electrical conductivity. American Society of Agronomy, 54, 290-293.
  • Matlack, G.R. (2013). Reassessment of the use of fire as a management tool in deciduous forests of eastern North America. Conservation Biology, 27, 916–926.
  • Mol G and Keesstra SD (2012). Soil science in a changing World. Cur Opin Environ Sustainability, 4, 473-477.Neff, J.C., Harden, J.W., Gleixener, G. (2005). Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Canadian Journal of Forest Research, 35, 2178-2187.
  • Neyisçi, T. (1989). Kızılçam orman ekosistemlerinde denetimli yakmanın toprak kimyasal özellikleri ve fidan gelişimi üzerine etkileri. Ormancılık Araştırma Enstitüsü Yayınları Teknik Bülten Serisi, Ankara.
  • Neyişçi, T., Şirin, G., Sarıbaşak, H. (2002). Batı Akdeniz Bölgesinde orman yangını tehlikesinin düşürülmesinde denetimli yakma tekniğinin uygulanma olanakları. Türkiye Ormancılar Derneği Yayını, 2, Ankara.
  • Okur, N., Altındişli, A., Çengel, M., Göçmez, S., Kayıkçıoğlu, H.H. (2009). Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems. Turkish Journal of Agricultural Forestry, 33, 413-423.
  • Özdamar, K. (2004). Paket Programlar ile İstatistiksel Veri Analizi. Kaan Yayınevi, Eskişehir.
  • Perala, D.A., Alban, D.H. (1982). Rates of forest floor decomposition and nutrient turnover in aspen, pine, and spruce stands on two soils. USDA For. Serv., North Central Forest Exp. Sta., St. Paul, MN., USA.
  • Pereira, P., Cerda, A., Ubeda, X., Mataix-Solera, J., Martin, D., Jordan, A.,Burguet, M. (2012). Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes. Solid Earth Discussions, 4, 1545-1584.
  • Quilchano, C., Marañón, T. (2002). Dehydrogenase activity in Mediterranean forest soils. Biological Fertility of Soil, 35, 102–107.
  • Quintero-Gradilla, S.D., García-Oliva, F., Cuevas-Guzmán, R., Jardel-Peláez, E.J., Martínez-Yrizar, A. (2015). Soil Carbon and Nutrient Recovery after high-severity Wildfire in Mexico. Fire Ecology, 11, 45-61.
  • Raison, R.J., Keith, H., Khanna, P.K. (1990). Effects of fire on the nutrient-supplying capacity of forest soils. Dyck WJ, and CA Mees (eds.), In Proceedings IEA/BE Workshop, Impact of Intensive Harvesting on Forest Site Productivity, Forest Research Institute, Rotorua, South Island, New Zealand, p. 39-54.
  • Schoch, P., Bınkley, D. (1986). Prescribed burning increased nitrogen availability in a mature loblolly pine stand. Forest Ecological Management, 14, 13-22.
  • Swallow, M., Quideau, S.A., MacKenzie, M.D., Kishcuk, B.E. (2009). Microbial community structure and function: The effect of sivicultural burning and topographic variability in northern Alberta. Soil Biology and Biochemistry, 41, 770-777.
  • Aşkın, T., Kızılkaya, R. (2006). Assessing spatial variability of soil enzyme activities in pasture topsoils using geostatistics. European Journal of Soil Biology 42, 230-237.
  • Tavşanoğlu, Ç., Gürkan, B. (2010). Physical and chemical properties of the soils at burned and unburned Pinus brutia Ten. forest sites in the Marmaris region. Hacettepe Journal of Biology and Chemistry, 38: 71-76.
  • Tecator (1987). Determination of Kjeldahl nitrogen content with the Kjeltec Auto 1030 Analyzer. Application Note, AN 30/87, Hönagäs, Sweden.
  • Tecimen, H.B. and Sevgi, O. (2011). Heating induced changes in mineral nitrogen and organic carbon in relation with temperature and time. Journal of Environmental. Biology, 32, 295-300.
  • Trabaud, L. (1983) The effects of different fire regimes on soil nutrient levels in Quercus coccifera garrigue. In: Kruger, F.J., Mitchell, D.T., Jarvis, J.U.M. (Eds). Mediterranean-type ecosystems: role of nutrients. Springer, Berlin Heidelberg New York, pp. 233-243.
  • TS 8335 ISO 10693 (1996). Toprak kalitesi -Karbonat Tayini - Volumertik Yöntem. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.TS 8336 (1990). Topraklar - Organik Madde Tayini. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • TS 8338 (1990). Topraklar - Fosfor Tayini - Modifiye Bray ve Krutz Yöntemi No 1 Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • TS 8341 (1990). Topraklar - Potasyum Amonyum Asetat Yöntemi. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • TS ISO 10390 (2013). Toprak kalitesi - pH tayini. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • TS ISO 11265 (1996). Toprak kalitesi - Elektiriksel Öziletkenlik tayini. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • TS ISO 11465 (1997). Toprak Kalitesi - Kütle Esasına Göre Kuru Madde ve Su Muhtevasının Tayini - Gravimetrik Yöntem. Türk Standardları Enstitüsü (Turkish Standards Institution), Ankara.
  • Turgay, O.C., Lumbanraja, J., Yusnaini, S., Nonaka, M. (2002). Effect of land degradation on soil microbial biomass in a hilly area of south Sumatra, Indonesia. Soil Sci Plant Nut, 48, 769-774.
  • Villar, M.C., Petrikova, V., Diaz-Ravina, M., Carballas, T. (2004). Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation. Geoderma, 122, 73-82.
  • White, C.S., (1986). Effects of prescribed fire on rates of decomposition and nitrogen mineralization in a ponderosapine ecosystem. Biology and Fertility of Soils, 2: 87-95.
  • Yıldız, O., Esen, D., Sargıncı, M. and Toprak, B. (2010). Effects of forest fire on soil nutrients in Turkish pine (Pinus brutia, Ten) Ecosystems. Journal of Environmental Biology, 31, 11-13.
There are 61 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Sepken Kaptanoğlu

Çağatay Tavşanoğlu

Oğuz Can Turgay

Publication Date December 26, 2018
Submission Date August 8, 2018
Published in Issue Year 2018 Volume: 6 Issue: 4

Cite

APA Kaptanoğlu, S., Tavşanoğlu, Ç., & Turgay, O. C. (2018). Soil chemistry and microbial activity after a surface fire in a mixed temperate forest. Eurasian Journal of Forest Science, 6(4), 1-13. https://doi.org/10.31195/ejejfs.451884

E-mail: Hbarist@gmail.com 

ISSN: 2147-7493

Eurasian Journal of Forest Science © 2013 is licensed under CC BY 4.0