Research Article
BibTex RIS Cite

Web Tabanlı Uzaktan Eğitim Sistemini Kullanmaya Devam Etme Niyetini Etkileyen Faktörlerin Yapısal Eşitlik Modeli ile İncelenmesi

Year 2018, Volume: 18 Issue: 78, 43 - 66, 20.11.2018

Abstract

Problem
Durumu:
Bu çalışmada, Yüzüncü Yıl Üniversitesi web tabanlı uzaktan eğitim sistemi
ile formasyon eğitimi alan öğrenciler örneğinde bu sistemi kullanmaya devam
etme niyetini etkileyen faktörler yapısal eşitlik modellemesi ile
incelenmiştir.

Araştırmanın
Amacı:
Çalışmada yer alacak yapılar detaylı bir literatür taraması sonucunda
belirlenmiş ve birçok bileşeni bir arada bulunduran web tabanlı uzaktan eğitim
sistemlerinin karmaşık yapısı çözümlenmeye çalışılmıştır. Kullanılacak modelin
belirlenmesinde Teknoloji Kabul Modeli (TAM, Technology Acceptance Model) ve
Onaylanmayan Beklentiler Kuramı’ ndan (EDT, Expectancy Disconfirmation Theory)
faydalanılmış ve geniş kapsamlı bir araştırma yapılmıştır. Sonuç olarak bir web
tabanlı uzaktan eğitim sistemini kullanmaya devam etme niyetinin algılanan
kalite, algılanan kontrol, algılanan kullanılabilirlik yapılarından dolaylı
olarak ve memnuniyet yapısından direk etkilendiği belirlenmiştir.

Araştırmanın Yöntemi:
Araştırmanın iki aşaması mevcuttur. İlk aşamada konuyla ilgili literatür
taraması yapılarak izlenecek yol ve kavramsal çerçeve belirlenmiş ikinci
aşamada araştırma modelinin hipotezleri belirlenip veriler toplanmıştır.
Verilerin toplanmasında ölçme aracı uygulanması yöntemi kullanılmıştır. Ölçme
aracı formu geçerliliği ispatlanmış birçok ölçeğin birleşiminden oluşmaktadır.
Ölçme aracında yer alan maddelerin Türkçe ’ye adaptasyonunda eğitim bilimleri
alanında uzman kişilerden görüşler alınmış ve ayrıca gerektiği noktada çeviri
konusunda da destek alınmıştır. Her bir alt ölçeğin güvenilirliği Cronbach’s
Alfa katsayıları incelenerek test edilmiş daha sonra yapısal eşitlik modeli
(SEM) yardımıyla, ileri sürülen teorik modele bağlı nedensel ilişkilerin
analizi yapılmıştır. Ölçeklerin güvenilirliğinin ve ölçüm araçlarının içsel
tutarlılığının test edilmesinde en çok kullanılan yöntemlerden biri olan
Cronbach’s α katsayısından yararlanılmıştır. Algılanan kalite yapısının
güvenilirliği Cronbach’s α katsayısı hesaplanarak belirlenmiştir. Algılanan
kalite yapısı için 0.888, Algılanan kullanılabilirlik 0,839, Algılanan kontrol
0,880 olarak hesaplanmıştır. Bu değerler her bir yapının yüksek derecede
güvenilir olduğunu göstermektedir.

Araştırmanın Bulguları:
Path katsayıları anlamlı bulunmuştur ve hipotezler doğrulanmıştır. Bir
e-öğrenme sisteminde algılanan kalitede meydana gelen 1 birimlik artış
algılanan kontrolde 0.99 birim artışa sebep olacaktır. Aynı şekilde algılanan
kalitede meydana gelen 1 birimlik artış algılanan kullanılabilirlikte 0.96
birim artışa sebep olacaktır, algılanan kullanılabilirlikte meydana gelen 1
birimlik artış memnuniyette 0.90 birimlik artışa sebep olacaktır ve son olarak
memnuniyette meydana gelen 1 birimlik artış kullanmaya devam etme niyetinde
0.93 birim artışa sebep olacaktır. Belirlilik katsayıları (
 ) % 91, %81 ve %87 olarak hesaplanmıştır.









Araştırmanın Sonuçları ve Önerileri:
Uzaktan eğitim sistemleri internet ve iletişim alanında yaşanılan gelişmelerle
birlikte öğrenme biçimlerinde çeşitliliğe yol açmıştır. Uzaktan eğitim artık
çoğunluğu web tabanlı olan bu sistemler üzerinden yürütülmektedir. Bu sistemler
birçok isimle, birçok öğrenme ortamı ile karşımıza çıkmaktadır. M-öğrenme,
harmanlanmış öğrenme, sanal ve gerçekliği arttırılmış öğrenme ortamları
bunlardan bazılarıdır. E-öğrenme uygulamaları açısından başarılı öğrenme
ortamlarının sağlanması önemli bir konudur. E-öğrenmenin şekli Web’ de yaşanan
gelişmelerle birlikte kullanıcıları öğrenme sürecinde üçüncü şahıs olmaktan öteye
geçirmiş, Web 2.0 ile etkileşime açık hale gelen öğrenme ortamları Web 3.0 ile
kullanıcıları öğrenme sürecine dâhil etmiştir. Bu sebeplerle kullanıcının
giderek sistemin merkezine oturduğu bu e-öğrenme sistemlerini kullanmaya devam
etme niyetlerini etkileyen faktörlerin incelenmesi araştırılmaya değer bir
konudur. Bu sebeple bu çalışma ile literatür incelenerek bir e-öğrenme
sistemini kullanmaya devam etme niyetini etkileyebilecek yapılar gerek önceki
çalışmalar ışığında gerekse yapılan analizler ve yapısal eşitlik modelleri ile
incelenmiştir. Kullanılan modellerde algılanan kalite, algılanan
kullanılabilirlik, algılanan kontrol, memnuniyet ve kullanmaya devam etme
niyeti yapıları arasındaki ilişkiler açığa çıkarılmaya çalışılmıştır. TAM ve
EDT’ nin yapıları ile bir takım diğer yapılar birleştirilerek incelenmiştir.
İlk olarak algılanan kalitenin sistem, servis ve bilgi kaliteleri ile
açıklanabileceği öne sürülmüş ve bu ilişkiler doğrulanmıştır. Literatürde bilgi
ve sistem kalitelerinin e-öğrenme ile ilgili çalışmalarda servis kalitesine
görece daha fazla kullanılmış olduğu görülmüştür. Ancak servis kalitesinin
algılanan kalitedeki değişimi açıklamada %85 ile önemli bir etkisinin olduğu
belirlenmiştir. Algılanan kullanılabilirlik yapısı, algılanan fayda, algılanan
kullanım kolaylığı ve bilişsel kapılma faktörleri ile açıklanmak istenmiş ve bu
ilişkiler de anlamlı bulunmuştur. Burada bahsedilmesi gereken önemli bir nokta,
bilişsel kapılmanın literatürde benzer kavramlar olarak nitelendirilen
algılanan eğlenebilirlik ve algılanan zevk bileşenleri olarak farklı isimlerle
de olsa bilgi sistemlerini ilgilendiren birçok çalışmada yer almasıdır. Diğer
bir hipotezde algılanan kalitenin algılanan kullanılabilirlik üzerindeki etkisi
incelenmiş ve anlamlı bir etkisi olduğu gösterilmiştir. Daha sonra algılanan
kontrol yapısı; internet öz-yeterliliği, bilgisayar öz yeterliliği ve internet
deneyimi boyutları ile incelenmiştir. Son yıllarda yapılan çalışmalarda
e-öğrenme öz-yeterliliği, e-öğrenme deneyimi gibi kavramların kullanıldığı
görülmüştür Bu sebeple Ülkemizde de e-öğrenme yaygınlaşmaya devam ettikçe
e-öğrenme deneyiminin farklı bir boyut olarak ayrıca irdelenmesinin faydalı
olacağı düşünülmektedir. Nitekim araştırmanın ilk kısmında yer alan demografik
bilgiler kısmında kullanıcıların daha önceden online bir sertifika programına
katılıp katılmadıkları sorulmuş ve öğrencilerin yaklaşık % 80’inin katılmadığı
bilgisine ulaşılmıştır. Kullanmaya devam etme niyetinde memnuniyetin pozitif
bir etkisi olduğu belirlenmiştir. Bu çalışmada yapılar arasındaki ilişkiler
ayrı ayrı birbirleri açısından değerlendirilmiştir ve sonuç olarak memnuniyetin
kullanmaya devam etme niyetinde direk etkisi olduğu diğer yapıların ise dolaylı
etkisi olduğu belirlenmiştir. Sayıca çoğalan online eğitim veren kuruluşlar göz
önünde bulundurulduğunda özellikle algılanan kalite yapısının gelecekteki
çalışmalarca incelenmesi faydalı olacaktır. Van Yüzüncü Yıl Üniversitesinde
uzaktan eğitimle pedagojik formasyon eğitimi gören öğrencilerin bir kısmına
anket uygulanması ile oluşturulmuştur. Bunlar araştırmanın kısıtlarını
oluşturmaktadır. Benzer çalışmalar farklı uzaktan eğitim merkezleri ve uzaktan
eğitim veren kuruluşlarca farklı öğrenci/kullanıcı gruplarına uygulanabilir.
Özellikle şirketlerce de kullanımı yaygınlaşan e-öğrenme sistemleri bu
çevrelere yapılacak araştırmalarla genişletilebilir. Web tabanlı eğitim
sistemleri yapısı farklı faktörler kullanılarak çözümlenebilir. Yapılacak
karşılaştırmalı çalışmalar ve benzer çalışmalar ile bu alanda faaliyet gösteren
kuruluşlara yol gösterme anlamında katkı sunabilir.

References

  • Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: cognitive absorption and beliefs about information technology usage. MIS Quarterly 24 (4), 665–694.
  • Agarwal, R., Sambamurthy, V., & Stair, R.M. (2000). Research report: the evolving relationship between general and specific computer self efficacy-an empirical assessment. Information Systems Research, 11(4), 418–430.
  • Ahn, T., Ryu, S., & Han, I. (2007). The impact of web quality and playfulness on user acceptance of online retailing. Information and Management, 44(3), 263-275.
  • Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.
  • Ajzen, I., & Fishbein, M. (Eds). (2005). The influence of attitudes on behavior. In D. Albarracín, B.T. Johnson, & M.P. Zanna (Ed.), The handbook of attitudes (pp. 173-222). Mahwah, New Jersey: Lawrence Erlbaum Associates.
  • Altıparmak, M., Kurt, İ. D., & Kapıdere, M. (2011). E-öğrenme ve uzaktan eğitimde açık kaynak kodlu öğrenme yönetim sistemleri [Open source learning management systems in e-learning and distance education]. XI. Akademik Bilişim Kongresi.
  • Bailey, J.E., & Pearson, S.W. (1983). Development of a tool for measuring and analyzing computer user satisfaction. Management Science 29 (5), 530–545.
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. New Jersey: Prentice-Hall.
  • Baroudi, J.J., & Orlikowski, W.J. (1988). A short form measure of user information satisfaction: a psychometric evaluation and notes on use. Journal of Management Information Systems 4 (4), 44–59.
  • Bhattacherjee, A. (2000). Acceptance of Internet applications services: The case of electronic Brokerages. IEEE Transactions on systems, Man, and Cybernetics—Part A: Systems and Humans 30, 411–420.
  • Bhattacherjee, A. (2001a). Understanding information systems continuance: An expectation–confirmation mode. MIS Quarterly 25 (3), 351–370.
  • Bhattacherjee, A. (2001b). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems 32 (2), 201–214.
  • Bhuasiri, W., Xaymoungkhoun, O., Zo, H., Rho, J. J., & Ciganek, A. P. (2012). Critical success factors for e-learning in developing countries: A comparative analysis between ICT experts and faculty. Computers & Education, 58(2), 843-855.
  • Bitner, M. J. (1990). Evaluating service encounters: The effects of physical surroundings and employee responses. The Journal of Marketing, 69-82.
  • Byrne, R. W., & Russon, A. E. (1998). Learning by imitation: A hierarchical approach. Behavioral and Brain Sciences, 21(05), 667-684.
  • Byrne, B. M. (1994). Burnout: Testing for the validity, replication, and invariance of causal structure across elementary, intermediate, and secondary teachers. American Educational Research Journal, 31(3), 645-673.
  • Chandra, V., & Fisher, D. L. (2009). Students’ perceptions of a blended web-based learning environment. Learning Environments Research, 12(1), 31-44.
  • Chang, M. M., & Lehman, J. D. (2013). Learning foreign language through an interactive multimedia program: An experimental study on the effects of the relevance component of the ARCS model. CALICO Journal, 20(1), 81-98.
  • Cheng, Y. M. (2011). Antecedents and consequences of e‐learning acceptance. Information Systems Journal, 21(3), 269-299.
  • Chiu, C., Hsu, M., Sun, S., Lin, T., & Sun, P. (2005). Usability, quality, value and e-learning continuance decisions. Computers and Education 45(4), 399–416.
  • Chiu, C. M., & Wang, E. T. (2008). Understanding Web-based learning continuance intention: The role of subjective task value. Information & Management, 45(3), 194-201.
  • Chung, J., & Tan, F. B. (2004). Antecedents of perceived playfulness: an exploratory study on user acceptance of general information-searching websites. Information and Management, 41(7), 869-881.
  • Compeau, D.R., & Higgins, C.A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189–211.
  • Çelik, H. E., & Yılmaz, V. (2013). LISREL 9.1 İle yapısal eşitlik modellemesi [Structural equation modeling with LISREL 9.1]. Ankara: Anı Yayıncılık.
  • Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. Davis, F.D., Bagozzi, R.P., & Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology 22(14), 1111–1132.
  • Delone, W.H., & McLean, E.R. (1992). Information systems success. The quest for the dependent variable. Information Systems Research, 3, 60–95.
  • DeLone, W., & McLean, E. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9–30.
  • Demir, C. (2013), Bilgi toplumuna geçiş sürecinde uzaktan eğitimin rolü [Role of distance education in transition to information society] (Doctoral dissertation). EÜ, Fen Bilimleri Enstitüsü, İzmir.
  • Devebakan, N. (2006.) Sağlık işletmelerinde teknik ve algılanan kalite [Technical and perceived quality in health business]. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(1), 120-150.
  • Eastin, M.A., & LaRose, R.L. (2000). Internet self-efficacy and the psychology of the digital divide. Journal of Computer Mediated Communication, 6(1).
  • Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intentions and Behavior: An Introduction to Theory and Research. Boston: Addison-Wesley, Reading, MA.
  • Girginer, N. (2001). Uzaktan eğitim kararlarında teknoloji, maliyet, etkinlik boyutları ve uzaktan eğitime geçiş için kavramsal bir model önerisi [A conceptual model proposal for technology, cost, efficiency dimensions and distance education in distance education decisions] (Doctoral dissertation). Anadolu Üniversitesi Sosyal Bilimler Enstitüsü, Eskişehir.
  • Gomez, E. A., Wu, D., & Passerini, K. (2010). Computer-supported team-based learning: The impact of motivation, enjoyment and team contributions on learning outcomes. Computers & Education, 55(1), 378-390.
  • Gorla, N., Somers, T. M., & Wong, B. (2010). Organizational impact of system quality, information quality, and service quality. The Journal of Strategic Information Systems, 19(3), 207-228.
  • Grandon, E. E., Alshare, K., & Kwun, O. (2005). Factors influencing student intention to adopt online classes: A cross-cultural study. Journal of Computing Sciences in Colleges, 20(4), 46-56.
  • Hayashi, A., Chen, C., Ryan, T., & Wu, J. (2004). The role of social presence and moderating role of computer self efficacy in predicting the continuance usage of e-learning systems. Journal of Information Systems Education, 15(2), 139–154. Holden, H. K., & Sinatra, A. M. (2014). Instructional Strategies for ITSs. Design Recommendations for Intelligent Tutoring Systems, 2, 265-282.
  • Hong, K., Cheng, J. L. A., & Liau, T. (2005). Effects of system's and user's characteristics on e-learning use: A study at Universiti Malaysia Sarawak. Journal of Science and Mathematics Education in Southeast Asia, 28(2), 1.
  • Hsu, M., & Chiu, C. (2004). Internet self-efficacy and electronic service acceptance. Decision Support Systems, 38, 369–381.
  • Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega, 23(6), 587–605.
  • Islam, A. K. M. (2012). The role of perceived system quality as educators’ motivation to continue e-learning system use. AIS Transactions on Human-Computer Interaction, 4(1), 25-43.
  • Joo, Y.-J., Bong, M., & Choi, H.-J. (2000). Self-efficacy for self-regulated learning, academic self-efficacy, and Internet self-efficacy in Webbased instruction. Educational Technology, Research and Development, 48(2), 5–17.
  • Joo, Y. J., Lim, K. Y., & Kim, E. K. (2011). Online university students' satisfaction and persistence: Examining perceived level of presence, usefulness and ease of use as predictors in a structural model. Computers & Education, 57(2), 1654-1664.
  • Kettinger, W.J., & Lee, C.C. (1994). Perceived service quality and user satisfaction with the information services function. Decision Sciences, 25(5/6), 737–766.
  • Kettinger, W.J., & Lee, C.C. (1997). Pragmatic perspectives on the measurement of information systems service quality. MIS Quarterly, 21(2), 223–239.
  • Kline, B.R. (2005). Principles and practice of structural equation modeling (Second Edition). New York London: The Guilford Press.
  • Kotler, P., (1994). Marketing management: analysis, planning, implementation, and control. Englewood Cliffs (NJ): Prentice-Hall.
  • Kotler, P., Jatusripiak S., & Maesiincee S. (2000). Ulusların pazarlanması. Translate: Ahmet Buğdaycı. İstanbul: İş Bankası Kültür Yayınları.
  • LaBarbera, P.A., & Mazursky, D. (1983). A longitudinal assessment of consumer satisfaction/dissatisfaction: The dynamic aspect of the cognitive process. Journal of Marketing Research, 29, 393–404.
  • Lai, M. L. (2008). Technology readiness, internet self-efficacy and computing experience of professional accounting students. Campus-Wide Information Systems, 25(1), 18-29.
  • Limayem, M., & Cheung, C. M. K. (2008). Understanding information systems continuance: The case of Internet-based learning technologies. Information & Management, 45(4), 227-232.
  • Lin, C. S., Wu, S., & Tsai, R. J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & Management, 42(5), 683-693.
  • Lin, H. F. (2010). An application of fuzzy AHP for evaluating course website quality. Computers & Education, 54(4), 877-888.
  • Lin, J. C. C., & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. International journal of information management, 20(3), 197-208.
  • Lin, W. S. (2012). Perceived fit and satisfaction on web learning performance: IS continuance intention and task-technology fit perspectives. International Journal of Human-Computer Studies, 70(7), 498-507.
  • Lindgaard, G., & Dudek, C. (2003). What is this evasive beast we call user satisfaction? Interacting with computers, 15(3), 429-452.
  • Ma, Q., & Liu, L. (2004). The technology acceptance model: A meta-analysis of empirical findings. Journal of End User Computing, 16(1), 59-72.
  • Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
  • Moon, J.W., & Kim, Y.G. (2001). Extending the TAM for a World-Wide- Web context. Information ve Management, 38(4), 217–230.
  • Moore, M.G., & Kearsley, G. (2012). Distance Education: A system views of online learning (3rd Edition). Belmont: Wadsworth Cengage Learning.
  • Newman, K. (2005). Albert in Africa: Online role-playing and lessons from improvisational theatre. Computers in Entertainment (CIE), 3(3), 4-4.
  • Ngai, A. C. Y. (2005). Cultural Influences On Video Games: players' preferences in narrative and game-play (Master's thesis). University of Waterloo.
  • Oliver, R.L. (1977). Effect of expectation and disconfirmation on postexposure product evaluations: An alternative interpretation. Journal of Applied Psychology, 62, 480-486.
  • Oliver, R.L. (1980). A cognitive model for the antecedents and consequences of satisfaction. Journal of Marketing Research, 17, 460–469.
  • Oliver, R.L. (1981). Measurement and evaluation of satisfaction process in retail setting. Journal of Retailing, 57, 25–48.
  • Özer, B. (1999). Türkiye'de Uzaktan Eğitim: Anadolu Üniversitesi Açıköğretim Fakültesinin Uygulamaları [Distance Education in Turkey: Anadolu University OEF Applications] Retriwed From: 15 September 2015 http://www.emu.edu.tr/bekirozer/makale/1989).T%C3%BCrkiye'de%20uzaktan.pdf.
  • Pai, F. Y., & Huang, K. I. (2011). Applying the Technology Acceptance Model to the introduction of healthcare information systems. Technological Forecasting and Social Change, 78(4), 650-660.
  • Parasuraman, A., Zeithaml, V.A., & Berry, L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49, 41–50.
  • Parasuraman, A., Zeithaml, V.A., & Berry, L. (1988). SERVQUAL: a multiple-item scale for measuring customer perceptions of service quality. Journal of Retailing, 64(1), 12–40.
  • Park, S. Y. (2009). An analysis of the Technology Acceptance Model in understanding university students’ behavioral intention to use e-learning. Educational Technology & Society, 12(3), 150-162.
  • Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service quality: A measure of information systems effectiveness. MIS quarterly, 173-187.
  • Pituch, K. A., & Lee, Y. K. (2006). The influence of system characteristics on e-learning use. Computers & Education, 47(2), 222-244.
  • Qiu, L., & Benbasat, I. (2005). An investigation into the effects of Text-To-Speech voice and 3D avatars on the perception of presence and flow of live help in electronic commerce. ACM Transactions on Computer-Human Interaction (TOCHI), 12(4), 329-355.
  • Rai, A., Lang, S.S., & Welker, R.B. (2002). Assessing the validity of IS success models: An empirical test and theoretical analysis. Information Systems Research, 13(1), 50–69.
  • Reisinger, Y., & Turner, L. (1999). Structural equation modeling with Lisrel: application in tourism. Tourism Management, 20(1), 71-88.
  • Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696.
  • Roche, S. M., & McConkey, K. M. (1990). Absorption: Nature, assessment, and correlates. Journal of Personality and Social Psychology, 59(1), 91.
  • Rouibah, K., & Hamdy, H. (2009). Factors affecting information communication technologies usage and satisfaction: Perspective from instant messaging in Kuwait. Journal of Global Information Management (JGIM), 17(2), 1-29.
  • Saade´ , R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information ve Management, 42(2), 317–327.
  • Seddon, P.B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240–253.
  • Serenko, A., Bontis, N., & Detlor, B. (2006). Understanding the user experience with interface agents in everyday work applications. Behaviour & Information Technology.
  • Shang, R. A., Chen, Y. C., & Shen, L. (2005). Extrinsic versus intrinsic motivations for consumers to shop on-line. Information & Management, 42(3), 401-413.
  • Soydal, İ. (2008). Web Bilgi Sistemlerinde Hizmet Kalitesi (Doctoral disertation). Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.
  • Spreng, R.A., MacKenzie, S.B., & Olshavsky, R.W. (1996). A re-examination of the determinants of consumer satisfaction. Journal of Marketing, 60, 15–32.
  • Sripada, C. S., Angstadt, M., Banks, S., Nathan, P. J., Liberzon, I., & Phan, K. L. (2009). Functional neuroimaging of mentalizing during the trust game in social anxiety disorder. Neuroreport, 20(11), 984.
  • Stajkovic, A. D., & Luthans, F. (1998). Self-efficacy and work-related performance: A meta-analysis. Psychological Bulletin, 124(2), 240. Stone, R. W., & Baker-Eveleth, L. (2013). Students’ expectation, confirmation, and continuance intention to use electronic textbooks. Computers in Human Behavior, 29(3), 984-990.
  • Strong, D. M., Dishaw, M. T., & Bandy, D. B. (2006). Extending task technology fit with computer self-efficacy. ACM SIGMIS Database, 37(2-3), 96-107.
  • Tan, M., & Teo, T. S., (2000). Factors influencing the adoption of Internet banking. Journal of the AIS, 1(1es), 5.
  • Taylor, S., & Todd, P. (1995). Assessing IT usage: the role of prior experience. MIS Quarterly, 19(4), 561–570.
  • Teh, P. L., & Yong, C. C. (2011). Knowledge sharing in IS personnel: Organizational behavior's perspective. Journal of Computer Information Systems, 51(4), 11.
  • Teo, T., & Noyes, J. (2011). An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers & Education, 57(2), 1645-1653.
  • Teune, H., & Przeworski, A. (1970). The logic of comparative social inquiry (pp. 32-34). New York: Wiley-Interscience.
  • Timm, H. N. (2002). Applied Multivariate Analysis. New York: Springer.
  • Tomer, A. (2003). A short history of structural equation models. In B. Pugesek (Ed.), Structural equation modeling: Applications in ecological and evolutionary biology (pp. 85−121). Cambridge University Press.
  • Torkzadeh, G., & Van Dyke, T.P. (2001). Development and validation of an Internet self-efficacy scale. Behaviour and Information Technology, 20(4), 275–280.
  • Tsai, C. C., Lin, S. S., & Tsai, M. J. (2001). Developing an Internet attitude scale for high school students. Computers & Education, 37(1), 41-51.
  • Udo, G. J., Bagchi, K. K., & Kirs, P. J. (2011). Using SERVQUAL to assess the quality of e-learning experience. Computers in Human Behavior, 27(3), 1272-1283.
  • Usluel, Y. K., & Vural, F. K. (2009). Adaptation of cognitive absorption scale to Turkish. Egitim Bilimleri Fakultesi Dergisi, 42(2), 77.
  • Venkatesh, V., & Davis, F.D. (1996). A model of the antecedents of perceived ease of use: development and test. Decision Sciences, 27(3), 451–481.
  • Venkatesh, V. (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365.
  • Venkatesh, V., & Davis, F.D. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Management Science, 46(2), 186–204.
  • Wang, Y. S., Lin, H. H., & Liao, Y. W. (2012). Investigating the individual difference antecedents of perceived enjoyment in students’ use of blogging. British Journal of Educational Technology, 43(1), 139-152.
  • Webster, J., & Martocchio, J.J. (1992). Microcomputer playfulness: Development of a measure with workplace implications. MIS Quarterly, 16(2), 201–226.
  • Wen, C., Prybutok, V. R., & Xu, C. (2011). An integrated model for customer online repurchase intention. Journal of Computer Information Systems, 52(1), 14-23.
  • Whitten, D., & Wakefield, R. L. (2006). Measuring switching costs in IT outsourcing services. The Journal of Strategic Information Systems, 15(3), 219-248.
  • Wood, R., & Bandura, A. (1989). Social cognitive theory of organizational management. Academy of Management Review, 14(3), 361-384.
  • Woszczynski, A.B., Roth, P.L., & Segars, A.H. (2002). Exploring the theoretical foundations of playfulness in computer interactions. Computers in Human Behavior, 18(4), 369–388.
  • Xu, J. D., Benbasat, I., & Cenfetelli, R. T. (2013). Integrating service quality with system and information quality: an empirical test in the e-service context. MIS Quarterly, 37(3), 777-794.

Examination of Factors Affecting Continuance Intention to use Web-Based Distance Learning System via Structural Equation Modelling

Year 2018, Volume: 18 Issue: 78, 43 - 66, 20.11.2018

Abstract

Purpose: The present study aims to
model continuance intention to use web-based distance learning system and
reveal the relationship between structures. Method: In this study, factors affecting continuance intention to
use a web-based distance learning system was examined with a sample of 104
students attending an initial teacher training program through a web-based
distance learning system at Van Yüzüncü Yıl University. The structures used in
the study were identified as a result of a detailed review of literature.
Moreover, complex structure of web-based distance learning systems, which
included many components, were analyzed.



Technology Acceptance Model and Expectancy Disconfirmation Theory were used
in determining the model to be used, and comprehensive research was conducted. Findings: continuance intention to use web-based
distance learning system was indirectly affected by perceived quality,
perceived control, perceived usability; and was directly affected by
satisfaction.
Implications for Research and Practice: Similar studies can be
conducted with different student/user groups by different distance learning centers
and institutions that provide distance learning services. Web-based distance
learning systems, which have become widely used especially by companies, can be
expanded via studies to be conducted within these environments

References

  • Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: cognitive absorption and beliefs about information technology usage. MIS Quarterly 24 (4), 665–694.
  • Agarwal, R., Sambamurthy, V., & Stair, R.M. (2000). Research report: the evolving relationship between general and specific computer self efficacy-an empirical assessment. Information Systems Research, 11(4), 418–430.
  • Ahn, T., Ryu, S., & Han, I. (2007). The impact of web quality and playfulness on user acceptance of online retailing. Information and Management, 44(3), 263-275.
  • Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.
  • Ajzen, I., & Fishbein, M. (Eds). (2005). The influence of attitudes on behavior. In D. Albarracín, B.T. Johnson, & M.P. Zanna (Ed.), The handbook of attitudes (pp. 173-222). Mahwah, New Jersey: Lawrence Erlbaum Associates.
  • Altıparmak, M., Kurt, İ. D., & Kapıdere, M. (2011). E-öğrenme ve uzaktan eğitimde açık kaynak kodlu öğrenme yönetim sistemleri [Open source learning management systems in e-learning and distance education]. XI. Akademik Bilişim Kongresi.
  • Bailey, J.E., & Pearson, S.W. (1983). Development of a tool for measuring and analyzing computer user satisfaction. Management Science 29 (5), 530–545.
  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. New Jersey: Prentice-Hall.
  • Baroudi, J.J., & Orlikowski, W.J. (1988). A short form measure of user information satisfaction: a psychometric evaluation and notes on use. Journal of Management Information Systems 4 (4), 44–59.
  • Bhattacherjee, A. (2000). Acceptance of Internet applications services: The case of electronic Brokerages. IEEE Transactions on systems, Man, and Cybernetics—Part A: Systems and Humans 30, 411–420.
  • Bhattacherjee, A. (2001a). Understanding information systems continuance: An expectation–confirmation mode. MIS Quarterly 25 (3), 351–370.
  • Bhattacherjee, A. (2001b). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems 32 (2), 201–214.
  • Bhuasiri, W., Xaymoungkhoun, O., Zo, H., Rho, J. J., & Ciganek, A. P. (2012). Critical success factors for e-learning in developing countries: A comparative analysis between ICT experts and faculty. Computers & Education, 58(2), 843-855.
  • Bitner, M. J. (1990). Evaluating service encounters: The effects of physical surroundings and employee responses. The Journal of Marketing, 69-82.
  • Byrne, R. W., & Russon, A. E. (1998). Learning by imitation: A hierarchical approach. Behavioral and Brain Sciences, 21(05), 667-684.
  • Byrne, B. M. (1994). Burnout: Testing for the validity, replication, and invariance of causal structure across elementary, intermediate, and secondary teachers. American Educational Research Journal, 31(3), 645-673.
  • Chandra, V., & Fisher, D. L. (2009). Students’ perceptions of a blended web-based learning environment. Learning Environments Research, 12(1), 31-44.
  • Chang, M. M., & Lehman, J. D. (2013). Learning foreign language through an interactive multimedia program: An experimental study on the effects of the relevance component of the ARCS model. CALICO Journal, 20(1), 81-98.
  • Cheng, Y. M. (2011). Antecedents and consequences of e‐learning acceptance. Information Systems Journal, 21(3), 269-299.
  • Chiu, C., Hsu, M., Sun, S., Lin, T., & Sun, P. (2005). Usability, quality, value and e-learning continuance decisions. Computers and Education 45(4), 399–416.
  • Chiu, C. M., & Wang, E. T. (2008). Understanding Web-based learning continuance intention: The role of subjective task value. Information & Management, 45(3), 194-201.
  • Chung, J., & Tan, F. B. (2004). Antecedents of perceived playfulness: an exploratory study on user acceptance of general information-searching websites. Information and Management, 41(7), 869-881.
  • Compeau, D.R., & Higgins, C.A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189–211.
  • Çelik, H. E., & Yılmaz, V. (2013). LISREL 9.1 İle yapısal eşitlik modellemesi [Structural equation modeling with LISREL 9.1]. Ankara: Anı Yayıncılık.
  • Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. Davis, F.D., Bagozzi, R.P., & Warshaw, P.R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology 22(14), 1111–1132.
  • Delone, W.H., & McLean, E.R. (1992). Information systems success. The quest for the dependent variable. Information Systems Research, 3, 60–95.
  • DeLone, W., & McLean, E. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9–30.
  • Demir, C. (2013), Bilgi toplumuna geçiş sürecinde uzaktan eğitimin rolü [Role of distance education in transition to information society] (Doctoral dissertation). EÜ, Fen Bilimleri Enstitüsü, İzmir.
  • Devebakan, N. (2006.) Sağlık işletmelerinde teknik ve algılanan kalite [Technical and perceived quality in health business]. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(1), 120-150.
  • Eastin, M.A., & LaRose, R.L. (2000). Internet self-efficacy and the psychology of the digital divide. Journal of Computer Mediated Communication, 6(1).
  • Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intentions and Behavior: An Introduction to Theory and Research. Boston: Addison-Wesley, Reading, MA.
  • Girginer, N. (2001). Uzaktan eğitim kararlarında teknoloji, maliyet, etkinlik boyutları ve uzaktan eğitime geçiş için kavramsal bir model önerisi [A conceptual model proposal for technology, cost, efficiency dimensions and distance education in distance education decisions] (Doctoral dissertation). Anadolu Üniversitesi Sosyal Bilimler Enstitüsü, Eskişehir.
  • Gomez, E. A., Wu, D., & Passerini, K. (2010). Computer-supported team-based learning: The impact of motivation, enjoyment and team contributions on learning outcomes. Computers & Education, 55(1), 378-390.
  • Gorla, N., Somers, T. M., & Wong, B. (2010). Organizational impact of system quality, information quality, and service quality. The Journal of Strategic Information Systems, 19(3), 207-228.
  • Grandon, E. E., Alshare, K., & Kwun, O. (2005). Factors influencing student intention to adopt online classes: A cross-cultural study. Journal of Computing Sciences in Colleges, 20(4), 46-56.
  • Hayashi, A., Chen, C., Ryan, T., & Wu, J. (2004). The role of social presence and moderating role of computer self efficacy in predicting the continuance usage of e-learning systems. Journal of Information Systems Education, 15(2), 139–154. Holden, H. K., & Sinatra, A. M. (2014). Instructional Strategies for ITSs. Design Recommendations for Intelligent Tutoring Systems, 2, 265-282.
  • Hong, K., Cheng, J. L. A., & Liau, T. (2005). Effects of system's and user's characteristics on e-learning use: A study at Universiti Malaysia Sarawak. Journal of Science and Mathematics Education in Southeast Asia, 28(2), 1.
  • Hsu, M., & Chiu, C. (2004). Internet self-efficacy and electronic service acceptance. Decision Support Systems, 38, 369–381.
  • Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega, 23(6), 587–605.
  • Islam, A. K. M. (2012). The role of perceived system quality as educators’ motivation to continue e-learning system use. AIS Transactions on Human-Computer Interaction, 4(1), 25-43.
  • Joo, Y.-J., Bong, M., & Choi, H.-J. (2000). Self-efficacy for self-regulated learning, academic self-efficacy, and Internet self-efficacy in Webbased instruction. Educational Technology, Research and Development, 48(2), 5–17.
  • Joo, Y. J., Lim, K. Y., & Kim, E. K. (2011). Online university students' satisfaction and persistence: Examining perceived level of presence, usefulness and ease of use as predictors in a structural model. Computers & Education, 57(2), 1654-1664.
  • Kettinger, W.J., & Lee, C.C. (1994). Perceived service quality and user satisfaction with the information services function. Decision Sciences, 25(5/6), 737–766.
  • Kettinger, W.J., & Lee, C.C. (1997). Pragmatic perspectives on the measurement of information systems service quality. MIS Quarterly, 21(2), 223–239.
  • Kline, B.R. (2005). Principles and practice of structural equation modeling (Second Edition). New York London: The Guilford Press.
  • Kotler, P., (1994). Marketing management: analysis, planning, implementation, and control. Englewood Cliffs (NJ): Prentice-Hall.
  • Kotler, P., Jatusripiak S., & Maesiincee S. (2000). Ulusların pazarlanması. Translate: Ahmet Buğdaycı. İstanbul: İş Bankası Kültür Yayınları.
  • LaBarbera, P.A., & Mazursky, D. (1983). A longitudinal assessment of consumer satisfaction/dissatisfaction: The dynamic aspect of the cognitive process. Journal of Marketing Research, 29, 393–404.
  • Lai, M. L. (2008). Technology readiness, internet self-efficacy and computing experience of professional accounting students. Campus-Wide Information Systems, 25(1), 18-29.
  • Limayem, M., & Cheung, C. M. K. (2008). Understanding information systems continuance: The case of Internet-based learning technologies. Information & Management, 45(4), 227-232.
  • Lin, C. S., Wu, S., & Tsai, R. J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & Management, 42(5), 683-693.
  • Lin, H. F. (2010). An application of fuzzy AHP for evaluating course website quality. Computers & Education, 54(4), 877-888.
  • Lin, J. C. C., & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. International journal of information management, 20(3), 197-208.
  • Lin, W. S. (2012). Perceived fit and satisfaction on web learning performance: IS continuance intention and task-technology fit perspectives. International Journal of Human-Computer Studies, 70(7), 498-507.
  • Lindgaard, G., & Dudek, C. (2003). What is this evasive beast we call user satisfaction? Interacting with computers, 15(3), 429-452.
  • Ma, Q., & Liu, L. (2004). The technology acceptance model: A meta-analysis of empirical findings. Journal of End User Computing, 16(1), 59-72.
  • Mathieson, K. (1991). Predicting user intentions: Comparing the technology acceptance model with the theory of planned behavior. Information Systems Research, 2(3), 173-191.
  • Moon, J.W., & Kim, Y.G. (2001). Extending the TAM for a World-Wide- Web context. Information ve Management, 38(4), 217–230.
  • Moore, M.G., & Kearsley, G. (2012). Distance Education: A system views of online learning (3rd Edition). Belmont: Wadsworth Cengage Learning.
  • Newman, K. (2005). Albert in Africa: Online role-playing and lessons from improvisational theatre. Computers in Entertainment (CIE), 3(3), 4-4.
  • Ngai, A. C. Y. (2005). Cultural Influences On Video Games: players' preferences in narrative and game-play (Master's thesis). University of Waterloo.
  • Oliver, R.L. (1977). Effect of expectation and disconfirmation on postexposure product evaluations: An alternative interpretation. Journal of Applied Psychology, 62, 480-486.
  • Oliver, R.L. (1980). A cognitive model for the antecedents and consequences of satisfaction. Journal of Marketing Research, 17, 460–469.
  • Oliver, R.L. (1981). Measurement and evaluation of satisfaction process in retail setting. Journal of Retailing, 57, 25–48.
  • Özer, B. (1999). Türkiye'de Uzaktan Eğitim: Anadolu Üniversitesi Açıköğretim Fakültesinin Uygulamaları [Distance Education in Turkey: Anadolu University OEF Applications] Retriwed From: 15 September 2015 http://www.emu.edu.tr/bekirozer/makale/1989).T%C3%BCrkiye'de%20uzaktan.pdf.
  • Pai, F. Y., & Huang, K. I. (2011). Applying the Technology Acceptance Model to the introduction of healthcare information systems. Technological Forecasting and Social Change, 78(4), 650-660.
  • Parasuraman, A., Zeithaml, V.A., & Berry, L. (1985). A conceptual model of service quality and its implications for future research. Journal of Marketing, 49, 41–50.
  • Parasuraman, A., Zeithaml, V.A., & Berry, L. (1988). SERVQUAL: a multiple-item scale for measuring customer perceptions of service quality. Journal of Retailing, 64(1), 12–40.
  • Park, S. Y. (2009). An analysis of the Technology Acceptance Model in understanding university students’ behavioral intention to use e-learning. Educational Technology & Society, 12(3), 150-162.
  • Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service quality: A measure of information systems effectiveness. MIS quarterly, 173-187.
  • Pituch, K. A., & Lee, Y. K. (2006). The influence of system characteristics on e-learning use. Computers & Education, 47(2), 222-244.
  • Qiu, L., & Benbasat, I. (2005). An investigation into the effects of Text-To-Speech voice and 3D avatars on the perception of presence and flow of live help in electronic commerce. ACM Transactions on Computer-Human Interaction (TOCHI), 12(4), 329-355.
  • Rai, A., Lang, S.S., & Welker, R.B. (2002). Assessing the validity of IS success models: An empirical test and theoretical analysis. Information Systems Research, 13(1), 50–69.
  • Reisinger, Y., & Turner, L. (1999). Structural equation modeling with Lisrel: application in tourism. Tourism Management, 20(1), 71-88.
  • Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696.
  • Roche, S. M., & McConkey, K. M. (1990). Absorption: Nature, assessment, and correlates. Journal of Personality and Social Psychology, 59(1), 91.
  • Rouibah, K., & Hamdy, H. (2009). Factors affecting information communication technologies usage and satisfaction: Perspective from instant messaging in Kuwait. Journal of Global Information Management (JGIM), 17(2), 1-29.
  • Saade´ , R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information ve Management, 42(2), 317–327.
  • Seddon, P.B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240–253.
  • Serenko, A., Bontis, N., & Detlor, B. (2006). Understanding the user experience with interface agents in everyday work applications. Behaviour & Information Technology.
  • Shang, R. A., Chen, Y. C., & Shen, L. (2005). Extrinsic versus intrinsic motivations for consumers to shop on-line. Information & Management, 42(3), 401-413.
  • Soydal, İ. (2008). Web Bilgi Sistemlerinde Hizmet Kalitesi (Doctoral disertation). Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.
  • Spreng, R.A., MacKenzie, S.B., & Olshavsky, R.W. (1996). A re-examination of the determinants of consumer satisfaction. Journal of Marketing, 60, 15–32.
  • Sripada, C. S., Angstadt, M., Banks, S., Nathan, P. J., Liberzon, I., & Phan, K. L. (2009). Functional neuroimaging of mentalizing during the trust game in social anxiety disorder. Neuroreport, 20(11), 984.
  • Stajkovic, A. D., & Luthans, F. (1998). Self-efficacy and work-related performance: A meta-analysis. Psychological Bulletin, 124(2), 240. Stone, R. W., & Baker-Eveleth, L. (2013). Students’ expectation, confirmation, and continuance intention to use electronic textbooks. Computers in Human Behavior, 29(3), 984-990.
  • Strong, D. M., Dishaw, M. T., & Bandy, D. B. (2006). Extending task technology fit with computer self-efficacy. ACM SIGMIS Database, 37(2-3), 96-107.
  • Tan, M., & Teo, T. S., (2000). Factors influencing the adoption of Internet banking. Journal of the AIS, 1(1es), 5.
  • Taylor, S., & Todd, P. (1995). Assessing IT usage: the role of prior experience. MIS Quarterly, 19(4), 561–570.
  • Teh, P. L., & Yong, C. C. (2011). Knowledge sharing in IS personnel: Organizational behavior's perspective. Journal of Computer Information Systems, 51(4), 11.
  • Teo, T., & Noyes, J. (2011). An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: A structural equation modeling approach. Computers & Education, 57(2), 1645-1653.
  • Teune, H., & Przeworski, A. (1970). The logic of comparative social inquiry (pp. 32-34). New York: Wiley-Interscience.
  • Timm, H. N. (2002). Applied Multivariate Analysis. New York: Springer.
  • Tomer, A. (2003). A short history of structural equation models. In B. Pugesek (Ed.), Structural equation modeling: Applications in ecological and evolutionary biology (pp. 85−121). Cambridge University Press.
  • Torkzadeh, G., & Van Dyke, T.P. (2001). Development and validation of an Internet self-efficacy scale. Behaviour and Information Technology, 20(4), 275–280.
  • Tsai, C. C., Lin, S. S., & Tsai, M. J. (2001). Developing an Internet attitude scale for high school students. Computers & Education, 37(1), 41-51.
  • Udo, G. J., Bagchi, K. K., & Kirs, P. J. (2011). Using SERVQUAL to assess the quality of e-learning experience. Computers in Human Behavior, 27(3), 1272-1283.
  • Usluel, Y. K., & Vural, F. K. (2009). Adaptation of cognitive absorption scale to Turkish. Egitim Bilimleri Fakultesi Dergisi, 42(2), 77.
  • Venkatesh, V., & Davis, F.D. (1996). A model of the antecedents of perceived ease of use: development and test. Decision Sciences, 27(3), 451–481.
  • Venkatesh, V. (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365.
  • Venkatesh, V., & Davis, F.D. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Management Science, 46(2), 186–204.
  • Wang, Y. S., Lin, H. H., & Liao, Y. W. (2012). Investigating the individual difference antecedents of perceived enjoyment in students’ use of blogging. British Journal of Educational Technology, 43(1), 139-152.
  • Webster, J., & Martocchio, J.J. (1992). Microcomputer playfulness: Development of a measure with workplace implications. MIS Quarterly, 16(2), 201–226.
  • Wen, C., Prybutok, V. R., & Xu, C. (2011). An integrated model for customer online repurchase intention. Journal of Computer Information Systems, 52(1), 14-23.
  • Whitten, D., & Wakefield, R. L. (2006). Measuring switching costs in IT outsourcing services. The Journal of Strategic Information Systems, 15(3), 219-248.
  • Wood, R., & Bandura, A. (1989). Social cognitive theory of organizational management. Academy of Management Review, 14(3), 361-384.
  • Woszczynski, A.B., Roth, P.L., & Segars, A.H. (2002). Exploring the theoretical foundations of playfulness in computer interactions. Computers in Human Behavior, 18(4), 369–388.
  • Xu, J. D., Benbasat, I., & Cenfetelli, R. T. (2013). Integrating service quality with system and information quality: an empirical test in the e-service context. MIS Quarterly, 37(3), 777-794.
There are 107 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Kubra Bagcı

H. Eray Celık This is me

Publication Date November 20, 2018
Published in Issue Year 2018 Volume: 18 Issue: 78

Cite

APA Bagcı, K., & Celık, H. E. (2018). Examination of Factors Affecting Continuance Intention to use Web-Based Distance Learning System via Structural Equation Modelling. Eurasian Journal of Educational Research, 18(78), 43-66.
AMA Bagcı K, Celık HE. Examination of Factors Affecting Continuance Intention to use Web-Based Distance Learning System via Structural Equation Modelling. Eurasian Journal of Educational Research. November 2018;18(78):43-66.
Chicago Bagcı, Kubra, and H. Eray Celık. “Examination of Factors Affecting Continuance Intention to Use Web-Based Distance Learning System via Structural Equation Modelling”. Eurasian Journal of Educational Research 18, no. 78 (November 2018): 43-66.
EndNote Bagcı K, Celık HE (November 1, 2018) Examination of Factors Affecting Continuance Intention to use Web-Based Distance Learning System via Structural Equation Modelling. Eurasian Journal of Educational Research 18 78 43–66.
IEEE K. Bagcı and H. E. Celık, “Examination of Factors Affecting Continuance Intention to use Web-Based Distance Learning System via Structural Equation Modelling”, Eurasian Journal of Educational Research, vol. 18, no. 78, pp. 43–66, 2018.
ISNAD Bagcı, Kubra - Celık, H. Eray. “Examination of Factors Affecting Continuance Intention to Use Web-Based Distance Learning System via Structural Equation Modelling”. Eurasian Journal of Educational Research 18/78 (November 2018), 43-66.
JAMA Bagcı K, Celık HE. Examination of Factors Affecting Continuance Intention to use Web-Based Distance Learning System via Structural Equation Modelling. Eurasian Journal of Educational Research. 2018;18:43–66.
MLA Bagcı, Kubra and H. Eray Celık. “Examination of Factors Affecting Continuance Intention to Use Web-Based Distance Learning System via Structural Equation Modelling”. Eurasian Journal of Educational Research, vol. 18, no. 78, 2018, pp. 43-66.
Vancouver Bagcı K, Celık HE. Examination of Factors Affecting Continuance Intention to use Web-Based Distance Learning System via Structural Equation Modelling. Eurasian Journal of Educational Research. 2018;18(78):43-66.