Research Article
BibTex RIS Cite
Year 2023, Volume: 2 Issue: 1, 1 - 13, 18.04.2023

Abstract

References

  • 1. Denton JJ & Cedillo YE. Investigating family history of diabetes as a predictor of fasting insulin and fasting glucose activity in a sample of healthy weight adults. Acta Diabetologica 2023 ;
  • 2. Kwan YH, Ong ZQ, Choo DYX, Phang JK, Yoon S, & Low LL. A Mobile Application to Improve Diabetes Self-Management Using Rapid Prototyping: Iterative Co-Design Approach in Asian Settings. Patient Preference and Adherence 2023 ;Volume 17 :1–11.
  • 3. Shojima N & Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. Journal of Diabetes Investigation 2023 ;
  • 4. Matthews JJ, Turner MD, Santos L, Elliott-Sale KJ, & Sale C. Carnosine increases insulin-stimulated glucose uptake and reduces methylglyoxal-modified proteins in type-2 diabetic human skeletal muscle cells. Amino Acids 2023 ;
  • 5. Rautenberg EK, Hamzaoui Y, & Coletta DK. Mini-review: Mitochondrial DNA methylation in type 2 diabetes and obesity. Frontiers in Endocrinology 2022 ;13 :.
  • 6. Destiarani W, Mulyani R, Yusuf M, & Maksum IP. Molecular Dynamics Simulation of T10609C and C10676G Mutations of Mitochondrial ND4L Gene Associated With Proton Translocation in Type 2 Diabetes Mellitus and Cataract Patients. Bioinformatics and Biology Insights 2020 ;14 :117793222097867.
  • 7. Ding Y, Zhang S, Guo Q, & Zheng H. Mitochondrial Diabetes is Associated with tRNALeu(UUR) A3243G and ND6 T14502C Mutations. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2022 ;Volume 15 :1687–1701.
  • 8. Yang L, Guo Q, Leng J, Wang K, & Ding Y. Late onset of type 2 diabetes is associated with mitochondrial tRNA Trp A5514G and tRNA Ser(AGY) C12237T mutations. Journal of Clinical Laboratory Analysis 2022 ;36 :.
  • 9. So S, Lee S, Lee Y, Han J, Kang S, Choi J, Kim B, Kim D, Yoo HJ, Shim IK, Oh JY, Lee YN, Kim SC, & Kang E. Dysfunctional pancreatic cells differentiated from induced pluripotent stem cells with mitochondrial DNA mutations. BMB Reports 2022 ;55 :453–458.
  • 10. Alwehaidah M, Al‑Kafaji G, Bakhiet M, & Alfadhli S. Next‑generation sequencing of the whole mitochondrial genome identifies novel and common variants in patients with psoriasis, type 2 diabetes mellitus and psoriasis with comorbid type 2 diabetes mellitus. Biomedical Reports 2021 ;14 :41.
  • 11. Jiang Z, Teng L, Zhang S, & Ding Y. Mitochondrial ND1 T4216C and ND2 C5178A mutations are associated with maternally transmitted diabetes mellitus. Mitochondrial DNA Part A 2021 ;32 :59–65.
  • 12. Vezza T, Díaz-Pozo P, Canet F, Marañón AM de, Abad-Jiménez Z, García-Gargallo C, Roldan I, Solá E, Bañuls C, López-Domènech S, Rocha M, & Víctor VM. The Role of Mitochondrial Dynamic Dysfunction in Age-Associated Type 2 Diabetes. The World Journal of Men’s Health 2022 ;40 :399.
  • 13. Ungvari Z, Tarantini S, Donato AJ, Galvan V, & Csiszar A. Mechanisms of Vascular Aging. Circulation Research 2018 ;123 :849–867.
  • 14. Mattiazzi M. The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Human Molecular Genetics 2004 ;13 :869–879.
  • 15. Hershberger KA, Rooney JP, Turner EA, Donoghue LJ, Bodhicharla R, Maurer LL, Ryde IT, Kim JJ, Joglekar R, Hibshman JD, Smith LL, Bhatt DP, Ilkayeva OR, Hirschey MD, & Meyer JN. Early-life mitochondrial DNA damage results in lifelong deficits in energy production mediated by redox signaling in Caenorhabditis elegans. Redox Biology 2021 ;43 :102000.
  • 16. Jarrett S, Lın H, Godley B, & Boulton M. Mitochondrial DNA damage and its potential role in retinal degeneration. Progress in Retinal and Eye Research 2008 ;27 :596–607.
  • 17. Yuzefovych L V., Pastukh VM, Ruchko M V., Simmons JD, Richards WO, & Rachek LI. Plasma mitochondrial DNA is elevated in obese type 2 diabetes mellitus patients and correlates positively with insulin resistance. PLOS ONE 2019 ;14 :e0222278.
  • 18. Ellinger J, Müller DC, Müller SC, Hauser S, Heukamp LC, Ruecker A von, Bastian PJ, & Walgenbach-Brunagel G. Circulating mitochondrial DNA in serum: A universal diagnostic biomarker for patients with urological malignancies. Urologic Oncology: Seminars and Original Investigations 2012 ;30 :509–515.
  • 19. Salazar AM, Pánico P, Burns AL, Díaz-Villaseñor A, Torres-Arellano JM, Juárez-Nájera A, González-Pimienta RE, Alvarez-Sekely AM, Zacarías-Castillo R, & Ostrosky-Wegman P. Calpain Activity in Leukocytes Is Associated with Diabetes Biochemical Markers. Archives of Medical Research 2019 ;50 :451–460.
  • 20. Wang T, Gao Y, Wang X, Shi Y, Xu J, Wu B, He J, & Li Y. Calpain-10 drives podocyte apoptosis and renal injury in diabetic nephropathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019 ;Volume 12 :1811–1820.
  • 21. Pánico P, Juárez-Nájera A, Iturriaga-Goyon E, Ostrosky-Wegman P, & Salazar AM. Arsenic impairs GLUT1 trafficking through the inhibition of the calpain system in lymphocytes. Toxicology and Applied Pharmacology 2019 ;380 :114700.
  • 22. Bushra Chaudhry, Farina Hanif KS. Molecular signatures of Calpain 10 isoforms sequences, envisage functional similarity and therapeutic potential. Pak J Pharm Sci 2019 ;32 :937–946.
  • 23. Smith MA & Schnellmann RG. Mitochondrial calpain 10 is degraded by Lon protease after oxidant injury. Archives of Biochemistry and Biophysics 2012 ;517 :144–152.
  • 24. Dirican E, Savrun ŞT, Aydın İE, Gülbay G, & Karaman Ü. Analysis of mitochondrial DNA cytochrome‐b ( CYB ) and ATPase‐6 gene mutations in COVID‐19 patients. Journal of Medical Virology 2022 ;94 :3138–3146.
  • 25. Dirican E, Karabulut Uzunçakmak S, & Özcan H. Şizofreni hastalarında CYB mtDNA mutasyonları ve PI3K/AKT/mTOR sinyal yolağındaki genlerin ekspresyon durumu. Cukurova Medical Journal 2022 ;47 :1695–1708.
  • 26. Avcilar T, Kirac D, Ergec D, Koc G, Ulucan K, Kaya Z, Kaspar EC, Turkeri L, & Guney AI. Investigation of the association between mitochondrial DNA and p53 gene mutations in transitional cell carcinoma of the bladder. Oncology Letters 2016 ;12 :2872–2879.
  • 27. Meng X, Schwarzenbach H, Yang Y, Müller V, Li N, Tian D, Shen Y, & Gong Z. Circulating Mitochondrial DNA is Linked to Progression and Prognosis of Epithelial Ovarian Cancer. Translational Oncology 2019 ;12 :1213–1220.
  • 28. Budnik LT, Kloth S, Baur X, Preisser AM, & Schwarzenbach H. Circulating Mitochondrial DNA as Biomarker Linking Environmental Chemical Exposure to Early Preclinical Lesions Elevation of mtDNA in Human Serum after Exposure to Carcinogenic Halo-Alkane-Based Pesticides. PLoS ONE 2013 ;8 :e64413.
  • 29. Dirican E & Çınar İ. Gossypin’in prostat kanser hücrelerinde MMP-2 ve MMP-9 genleri üzerindeki etkisi. Cukurova Medical Journal 2022 ;47 :1290–1295.
  • 30. Baier LJ, Permana PA, Yang X, Pratley RE, Hanson RL, Shen GQ, Mott D, Knowler WC, Cox NJ, Horikawa Y, Oda N, Bell GI, & Bogardus C. A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. Journal of Clinical Investigation 2000 ;106 :R69–R73.
  • 31. Grantham R. Amino Acid Difference Formula to Help Explain Protein Evolution. Science 1974 ;185 :862–864.
  • 32. Abkevich V. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. Journal of Medical Genetics 2004 ;41 :492–507.
  • 33. Davison GW, Irwin RE, & Walsh CP. The metabolic-epigenetic nexus in type 2 diabetes mellitus. Free Radical Biology and Medicine 2021 ;170 :194–206.
  • 34. Chalkia D, Chang YC, Derbeneva O, Lvova M, Wang P, Mishmar D, Liu X, Singh LN, Chuang LM, & Wallace DC. Mitochondrial DNA associations with East Asian metabolic syndrome. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2018 ;1859 :878–892.
  • 35. Suzuki S, Oka Y, Kadowaki T, Kanatsuka A, Kuzuya T, Kobayashi M, Sanke T, Seino Y, & Nanjo K. Clinical features of diabetes mellitus with the mitochondrial DNA 3243 (A–G) mutation in Japanese: Maternal inheritance and mitochondria-related complications. Diabetes Research and Clinical Practice 2003 ;59 :207–217.
  • 36. Permana Maksum *Iman, Saputra SR, Indrayati N, Yusuf *Muhammad, & Subroto T. Bioinformatics Study of m.9053G>A Mutation at the ATP6 Gene in Relation to Type 2 Diabetes Mellitus and Cataract Diseases. Bioinformatics and Biology Insights 2017 ;11 :117793221772851.
  • 37. Mezghani N, Mnif M, Mkaouar-Rebai E, Kallel N, Charfi N, Abid M, & Fakhfakh F. A maternally inherited diabetes and deafness patient with the 12S rRNA m.1555A>G and the ND1 m.3308T>C mutations associated with multiple mitochondrial deletions. Biochemical and Biophysical Research Communications 2013 ;431 :670–674.
  • 38. Čater M & Križančić Bombek LK. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants 2022 ;11 :1473.
  • 39. Geest B De & Mishra M. Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants 2022 ;11 :784.
  • 40. Čater M & Križančić Bombek LK. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants 2022 ;11 :1473.
  • 41. Skuratovskaia D, Komar A, Vulf M, & Litvinova L. Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ 2020 ;8 :e9741.
  • 42. Bae JH, Jo SI, Kim SJ, Lee JM, Jeong JH, Kang JS, Cho NJ, Kim SS, Lee EY, & Moon JS. Circulating Cell-Free mtDNA Contributes to AIM2 Inflammasome-Mediated Chronic Inflammation in Patients with Type 2 Diabetes. Cells 2019 ;8 :328.
  • 43. Lai CS, Wu JC, Ho CT, & Pan MH. Chemoprevention of obesity by dietary natural compounds targeting mitochondrial regulation. Molecular Nutrition & Food Research 2017 ;61 :1600721.
  • 44. Arrington DD, Vleet TR Van, & Schnellmann RG. Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. American Journal of Physiology-Cell Physiology 2006 ;291 :C1159–C1171.
  • 45. Paul DS, Harmon AW, Wınston CP, & Patel YM. Calpain facilitates GLUT4 vesicle translocation during insulin-stimulated glucose uptake in adipocytes. Biochemical Journal 2003 ;376 :625–632.
  • 46. Hatta T, Iemura S ichiro, Ohishi T, Nakayama H, Seimiya H, Yasuda T, Iizuka K, Fukuda M, Takeda J, Natsume T, & Horikawa Y. Calpain-10 regulates actin dynamics by proteolysis of microtubule-associated protein 1B. Scientific Reports 2018 ;8 :16756.
  • 47. Mikosik A, Jasiulewicz A, Daca A, Henc I, Frąckowiak JE, Ruckemann-Dziurdzińska K, Foerster J, Page A Le, Bryl E, Fulop T, & Witkowski JM. Roles of calpain-calpastatin system (CCS) in human T cell activation. Oncotarget 2016 ;7 :76479–76495.
  • 48. Seremwe M, Schnellmann RG, & Bollag WB. Calpain-10 Activity Underlies Angiotensin II-Induced Aldosterone Production in an Adrenal Glomerulosa Cell Model. Endocrinology 2015 ;156 :2138–2149.
  • 49. Ling C, Groop L, Guerra S Del, & Lupi R. Calpain-10 Expression Is Elevated in Pancreatic Islets from Patients with Type 2 Diabetes. PLoS ONE 2009 ;4 :e6

mtDNA damage, mtDNA mutations and Calpain 10 (CAPN10) gene expression status in type 2 diabetes patients

Year 2023, Volume: 2 Issue: 1, 1 - 13, 18.04.2023

Abstract

In this study, we aimed to analyze mitochondrial DNA (mtDNA) mutations, mtDNA damage and expression level of the Calpain 10 (CAPN10) gene in patients with Type-2 diabetes (T2D). Whole blood was drawn from 45 healthy participants who did not have diabetes mellitus and additional comorbid disease and 52 people with T2D for this investigation. DNA and RNA isolations of all samples were performed. For the analysis of mutations in the ATP6, ND1, CYB and D310 mtDNA genes, samples were first amplified by PCR. It was then confirmed by Sanger DNA sequencing. mtDNA -79 and mtDNA-230 fragments were amplified by RT-PCR to detect mtDNA damage. RT-PCR was also used for the mRNA expression of the CAPN10 gene. In patients with type-2 diabetes, m.8860 AG (ATP6) (52/52), m.15326 AG (CYB) (45/52), m.3384 AT (ND1) (2/52) and m.489 TC (D310) (11/52) were the most common mtDNA mutations. In addition, 7C (17/52), 8C (8/52) and 9C (1/52) mononucleotide repeats were detected in the D310 control region. Some of the discovered mutations were linked to damaging, illness causing, or benign characteristics, according to in silico analyses. An increase in the level of mtDNA-79, mtDNA-230 fragments and mtDNA integrity was determined in patients with T2Dcompared to healthy individuals (p=0.0090, p=0.9555, p=0.1213 respectively). The level of mtDNA-79 and mtDNA-230 fragments in patients showed a weak but significant positive correlation (p=0.0321, r=0.2977). In T2D patients compared to healthy people, the CAPN10 gene's mRNA expression was significantly higher (p=0.0360). Additionally, ROC analysis revealed that CAPN10 and mtDNA-79 had good diagnostic value in the patient group (AUC:0.603, p=0.0116, 95% CI:0.485-0.713, sensitivity: 53.8% for CAPN10 and AUC:0.653, p=0.0061, 95% CI:0.550-0.747, sensitivity: 51.9% for mtDNA-79). The findings showed that the frequency of mtDNA mutations and the expression level of the CAPN10 gene are high in patients with type-2 diabetes, and mtDNA damage is also increased. We believe that studying these mechanisms in the larger T2D patient population may be valuable in following the course of the disease.

References

  • 1. Denton JJ & Cedillo YE. Investigating family history of diabetes as a predictor of fasting insulin and fasting glucose activity in a sample of healthy weight adults. Acta Diabetologica 2023 ;
  • 2. Kwan YH, Ong ZQ, Choo DYX, Phang JK, Yoon S, & Low LL. A Mobile Application to Improve Diabetes Self-Management Using Rapid Prototyping: Iterative Co-Design Approach in Asian Settings. Patient Preference and Adherence 2023 ;Volume 17 :1–11.
  • 3. Shojima N & Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. Journal of Diabetes Investigation 2023 ;
  • 4. Matthews JJ, Turner MD, Santos L, Elliott-Sale KJ, & Sale C. Carnosine increases insulin-stimulated glucose uptake and reduces methylglyoxal-modified proteins in type-2 diabetic human skeletal muscle cells. Amino Acids 2023 ;
  • 5. Rautenberg EK, Hamzaoui Y, & Coletta DK. Mini-review: Mitochondrial DNA methylation in type 2 diabetes and obesity. Frontiers in Endocrinology 2022 ;13 :.
  • 6. Destiarani W, Mulyani R, Yusuf M, & Maksum IP. Molecular Dynamics Simulation of T10609C and C10676G Mutations of Mitochondrial ND4L Gene Associated With Proton Translocation in Type 2 Diabetes Mellitus and Cataract Patients. Bioinformatics and Biology Insights 2020 ;14 :117793222097867.
  • 7. Ding Y, Zhang S, Guo Q, & Zheng H. Mitochondrial Diabetes is Associated with tRNALeu(UUR) A3243G and ND6 T14502C Mutations. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2022 ;Volume 15 :1687–1701.
  • 8. Yang L, Guo Q, Leng J, Wang K, & Ding Y. Late onset of type 2 diabetes is associated with mitochondrial tRNA Trp A5514G and tRNA Ser(AGY) C12237T mutations. Journal of Clinical Laboratory Analysis 2022 ;36 :.
  • 9. So S, Lee S, Lee Y, Han J, Kang S, Choi J, Kim B, Kim D, Yoo HJ, Shim IK, Oh JY, Lee YN, Kim SC, & Kang E. Dysfunctional pancreatic cells differentiated from induced pluripotent stem cells with mitochondrial DNA mutations. BMB Reports 2022 ;55 :453–458.
  • 10. Alwehaidah M, Al‑Kafaji G, Bakhiet M, & Alfadhli S. Next‑generation sequencing of the whole mitochondrial genome identifies novel and common variants in patients with psoriasis, type 2 diabetes mellitus and psoriasis with comorbid type 2 diabetes mellitus. Biomedical Reports 2021 ;14 :41.
  • 11. Jiang Z, Teng L, Zhang S, & Ding Y. Mitochondrial ND1 T4216C and ND2 C5178A mutations are associated with maternally transmitted diabetes mellitus. Mitochondrial DNA Part A 2021 ;32 :59–65.
  • 12. Vezza T, Díaz-Pozo P, Canet F, Marañón AM de, Abad-Jiménez Z, García-Gargallo C, Roldan I, Solá E, Bañuls C, López-Domènech S, Rocha M, & Víctor VM. The Role of Mitochondrial Dynamic Dysfunction in Age-Associated Type 2 Diabetes. The World Journal of Men’s Health 2022 ;40 :399.
  • 13. Ungvari Z, Tarantini S, Donato AJ, Galvan V, & Csiszar A. Mechanisms of Vascular Aging. Circulation Research 2018 ;123 :849–867.
  • 14. Mattiazzi M. The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Human Molecular Genetics 2004 ;13 :869–879.
  • 15. Hershberger KA, Rooney JP, Turner EA, Donoghue LJ, Bodhicharla R, Maurer LL, Ryde IT, Kim JJ, Joglekar R, Hibshman JD, Smith LL, Bhatt DP, Ilkayeva OR, Hirschey MD, & Meyer JN. Early-life mitochondrial DNA damage results in lifelong deficits in energy production mediated by redox signaling in Caenorhabditis elegans. Redox Biology 2021 ;43 :102000.
  • 16. Jarrett S, Lın H, Godley B, & Boulton M. Mitochondrial DNA damage and its potential role in retinal degeneration. Progress in Retinal and Eye Research 2008 ;27 :596–607.
  • 17. Yuzefovych L V., Pastukh VM, Ruchko M V., Simmons JD, Richards WO, & Rachek LI. Plasma mitochondrial DNA is elevated in obese type 2 diabetes mellitus patients and correlates positively with insulin resistance. PLOS ONE 2019 ;14 :e0222278.
  • 18. Ellinger J, Müller DC, Müller SC, Hauser S, Heukamp LC, Ruecker A von, Bastian PJ, & Walgenbach-Brunagel G. Circulating mitochondrial DNA in serum: A universal diagnostic biomarker for patients with urological malignancies. Urologic Oncology: Seminars and Original Investigations 2012 ;30 :509–515.
  • 19. Salazar AM, Pánico P, Burns AL, Díaz-Villaseñor A, Torres-Arellano JM, Juárez-Nájera A, González-Pimienta RE, Alvarez-Sekely AM, Zacarías-Castillo R, & Ostrosky-Wegman P. Calpain Activity in Leukocytes Is Associated with Diabetes Biochemical Markers. Archives of Medical Research 2019 ;50 :451–460.
  • 20. Wang T, Gao Y, Wang X, Shi Y, Xu J, Wu B, He J, & Li Y. Calpain-10 drives podocyte apoptosis and renal injury in diabetic nephropathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2019 ;Volume 12 :1811–1820.
  • 21. Pánico P, Juárez-Nájera A, Iturriaga-Goyon E, Ostrosky-Wegman P, & Salazar AM. Arsenic impairs GLUT1 trafficking through the inhibition of the calpain system in lymphocytes. Toxicology and Applied Pharmacology 2019 ;380 :114700.
  • 22. Bushra Chaudhry, Farina Hanif KS. Molecular signatures of Calpain 10 isoforms sequences, envisage functional similarity and therapeutic potential. Pak J Pharm Sci 2019 ;32 :937–946.
  • 23. Smith MA & Schnellmann RG. Mitochondrial calpain 10 is degraded by Lon protease after oxidant injury. Archives of Biochemistry and Biophysics 2012 ;517 :144–152.
  • 24. Dirican E, Savrun ŞT, Aydın İE, Gülbay G, & Karaman Ü. Analysis of mitochondrial DNA cytochrome‐b ( CYB ) and ATPase‐6 gene mutations in COVID‐19 patients. Journal of Medical Virology 2022 ;94 :3138–3146.
  • 25. Dirican E, Karabulut Uzunçakmak S, & Özcan H. Şizofreni hastalarında CYB mtDNA mutasyonları ve PI3K/AKT/mTOR sinyal yolağındaki genlerin ekspresyon durumu. Cukurova Medical Journal 2022 ;47 :1695–1708.
  • 26. Avcilar T, Kirac D, Ergec D, Koc G, Ulucan K, Kaya Z, Kaspar EC, Turkeri L, & Guney AI. Investigation of the association between mitochondrial DNA and p53 gene mutations in transitional cell carcinoma of the bladder. Oncology Letters 2016 ;12 :2872–2879.
  • 27. Meng X, Schwarzenbach H, Yang Y, Müller V, Li N, Tian D, Shen Y, & Gong Z. Circulating Mitochondrial DNA is Linked to Progression and Prognosis of Epithelial Ovarian Cancer. Translational Oncology 2019 ;12 :1213–1220.
  • 28. Budnik LT, Kloth S, Baur X, Preisser AM, & Schwarzenbach H. Circulating Mitochondrial DNA as Biomarker Linking Environmental Chemical Exposure to Early Preclinical Lesions Elevation of mtDNA in Human Serum after Exposure to Carcinogenic Halo-Alkane-Based Pesticides. PLoS ONE 2013 ;8 :e64413.
  • 29. Dirican E & Çınar İ. Gossypin’in prostat kanser hücrelerinde MMP-2 ve MMP-9 genleri üzerindeki etkisi. Cukurova Medical Journal 2022 ;47 :1290–1295.
  • 30. Baier LJ, Permana PA, Yang X, Pratley RE, Hanson RL, Shen GQ, Mott D, Knowler WC, Cox NJ, Horikawa Y, Oda N, Bell GI, & Bogardus C. A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. Journal of Clinical Investigation 2000 ;106 :R69–R73.
  • 31. Grantham R. Amino Acid Difference Formula to Help Explain Protein Evolution. Science 1974 ;185 :862–864.
  • 32. Abkevich V. Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. Journal of Medical Genetics 2004 ;41 :492–507.
  • 33. Davison GW, Irwin RE, & Walsh CP. The metabolic-epigenetic nexus in type 2 diabetes mellitus. Free Radical Biology and Medicine 2021 ;170 :194–206.
  • 34. Chalkia D, Chang YC, Derbeneva O, Lvova M, Wang P, Mishmar D, Liu X, Singh LN, Chuang LM, & Wallace DC. Mitochondrial DNA associations with East Asian metabolic syndrome. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2018 ;1859 :878–892.
  • 35. Suzuki S, Oka Y, Kadowaki T, Kanatsuka A, Kuzuya T, Kobayashi M, Sanke T, Seino Y, & Nanjo K. Clinical features of diabetes mellitus with the mitochondrial DNA 3243 (A–G) mutation in Japanese: Maternal inheritance and mitochondria-related complications. Diabetes Research and Clinical Practice 2003 ;59 :207–217.
  • 36. Permana Maksum *Iman, Saputra SR, Indrayati N, Yusuf *Muhammad, & Subroto T. Bioinformatics Study of m.9053G>A Mutation at the ATP6 Gene in Relation to Type 2 Diabetes Mellitus and Cataract Diseases. Bioinformatics and Biology Insights 2017 ;11 :117793221772851.
  • 37. Mezghani N, Mnif M, Mkaouar-Rebai E, Kallel N, Charfi N, Abid M, & Fakhfakh F. A maternally inherited diabetes and deafness patient with the 12S rRNA m.1555A>G and the ND1 m.3308T>C mutations associated with multiple mitochondrial deletions. Biochemical and Biophysical Research Communications 2013 ;431 :670–674.
  • 38. Čater M & Križančić Bombek LK. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants 2022 ;11 :1473.
  • 39. Geest B De & Mishra M. Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants 2022 ;11 :784.
  • 40. Čater M & Križančić Bombek LK. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants 2022 ;11 :1473.
  • 41. Skuratovskaia D, Komar A, Vulf M, & Litvinova L. Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ 2020 ;8 :e9741.
  • 42. Bae JH, Jo SI, Kim SJ, Lee JM, Jeong JH, Kang JS, Cho NJ, Kim SS, Lee EY, & Moon JS. Circulating Cell-Free mtDNA Contributes to AIM2 Inflammasome-Mediated Chronic Inflammation in Patients with Type 2 Diabetes. Cells 2019 ;8 :328.
  • 43. Lai CS, Wu JC, Ho CT, & Pan MH. Chemoprevention of obesity by dietary natural compounds targeting mitochondrial regulation. Molecular Nutrition & Food Research 2017 ;61 :1600721.
  • 44. Arrington DD, Vleet TR Van, & Schnellmann RG. Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. American Journal of Physiology-Cell Physiology 2006 ;291 :C1159–C1171.
  • 45. Paul DS, Harmon AW, Wınston CP, & Patel YM. Calpain facilitates GLUT4 vesicle translocation during insulin-stimulated glucose uptake in adipocytes. Biochemical Journal 2003 ;376 :625–632.
  • 46. Hatta T, Iemura S ichiro, Ohishi T, Nakayama H, Seimiya H, Yasuda T, Iizuka K, Fukuda M, Takeda J, Natsume T, & Horikawa Y. Calpain-10 regulates actin dynamics by proteolysis of microtubule-associated protein 1B. Scientific Reports 2018 ;8 :16756.
  • 47. Mikosik A, Jasiulewicz A, Daca A, Henc I, Frąckowiak JE, Ruckemann-Dziurdzińska K, Foerster J, Page A Le, Bryl E, Fulop T, & Witkowski JM. Roles of calpain-calpastatin system (CCS) in human T cell activation. Oncotarget 2016 ;7 :76479–76495.
  • 48. Seremwe M, Schnellmann RG, & Bollag WB. Calpain-10 Activity Underlies Angiotensin II-Induced Aldosterone Production in an Adrenal Glomerulosa Cell Model. Endocrinology 2015 ;156 :2138–2149.
  • 49. Ling C, Groop L, Guerra S Del, & Lupi R. Calpain-10 Expression Is Elevated in Pancreatic Islets from Patients with Type 2 Diabetes. PLoS ONE 2009 ;4 :e6
There are 49 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Research Articles
Authors

Ebubekir Dirican 0000-0001-9260-5223

Yasemin Kaya

Early Pub Date March 30, 2023
Publication Date April 18, 2023
Published in Issue Year 2023 Volume: 2 Issue: 1

Cite

APA Dirican, E., & Kaya, Y. (2023). mtDNA damage, mtDNA mutations and Calpain 10 (CAPN10) gene expression status in type 2 diabetes patients. Eurasian Journal of Molecular and Biochemical Sciences, 2(1), 1-13.