Research Article
BibTex RIS Cite

Kronik Obstrüktif Akciğer Hastaları ile Sağlıklı Bireylerin Solunum İş Yükünün Termodinamik Analizi

Year 2018, Issue: 14, 145 - 151, 31.12.2018
https://doi.org/10.31590/ejosat.472665

Abstract

Kronik
Obstrüktif Akciğer Hastalığı (KOAH) sigara dumanı ve diğer zararlı partiküller
nedeniyle akciğer enflamasyonu ve hava yolu limitasyonu ile karakterize bir
hastalıktır. Dünya Sağlık Örgütü (DSÖ), yüksek morbidite ve mortaliteye sahip
KOAH nedenli ölümlerin 2030 yılında üçüncü sırada olacağını öngörmektedir.
Havayolu limitasyonu ve respiratuvar kasların yapısal ve fonksiyonel olarak
değişmesi solunum kas kuvvetinde azalmaya neden olarak solunum iş yükünü
arttırır. Respiratuvar kasların termodinamik analizi ile, iş veriminin
azalmasına yol açan enerji kayıplarının ölçülmesi (entropi) ve maksimum yararlı
işin (ekserji) yıkımı hesaplanabilmektedir. Bu çalışmada, KOAH hastaları ile
sağlıklı bireylerin solunum kas işlerinin termodinamik analizle
karşılaştırılması amaçlanmıştır. Respiratuvar kasların yaptığı işe
termodinamiğin birinci ve ikinci kanunları uygulanmıştır. KOAH’ lı hastaların
ve sağlıklı bireylerin respiratuvar kasları
etrafında termodinamik analizler kütle, enerji, ekserji ve entropi balansları
uygulanarak yapılmıştır. KOAH’lı hastalar ile sağlıklı bireylerin solunum iş
yükünün termodinamik analizi sonucunda ekserji yıkımı sırasıyla 1.23x10-2 kJ/min
ile 6.01x10-3 kJ/min olarak hesaplanmıştır. Entropi üretimi ise
KOAH’lı bireylerde 4.12x10-5
(kJ/K)/min iken
sağlıklı bireylerde 2.02x10-5
(kJ/K)/min olduğu görülmüştür.
Enerji dengesi analizi sonuçlarına göre solunum işi için harcanan glikoz
miktarları KOAH’lı ve sağlıklı bireyler için sırasıyla 0.32-0.16 mmol/min
olarak hesaplanmıştır. Bu termodinamik analiz ile, KOAH hastası bireylerde
respiratuvar kasların yaptığı iş yükünün artmasıyla ekserji yıkımı ve entropi
üretiminin arttığı belirlenmiştir. Enerji dengesi analizlerinin sonuçlarına
bakıldığında, solunum işi için KOAH hastası bir bireyin, sağlıklı bireye göre 2
kat daha fazla glikoz kullandığı görülmüştür. KOAH hastalarında entropi üretimi
ve ekserji yıkımı sağlıklı bireylere göre yüksek olduğundan, bu hastalarda
entropi artışının dokulardaki hasarla sonuçlanacağı ve sağlıklı yaşlanma
üzerinde olumsuz etkileri olacağı düşünülmektedir.

References

  • Adams PF, Hendershot GE, Marano MA., 1996. Current estimates from the National Health Interview Survey,. National Center for Health Statistics. Vital Health Stat 1991; 200: 93.
  • Alvar, G., Agusti, N. 2005. Systemic Effects of Chronic Obstructive Pulmoner Disease. Proceedings of the American Thoracic Society, 2,367-370.
  • Agusti, A. 2007. Systemic effects of chronic obstructive pulmonary disease: what we know and what we don't know (but should). Proceedings of the American Thoracic Society, 4 (7), 522-525.
  • Aoki, I. 1994. Entropy Production in Human Life Span: A Thermodynamical Measure for Aging. Age, 17:29-31.
  • Balmer, R.T. 1982. Entropy and Aging in Biological Systems. Chemical Engineering Communications, 17:171-181.
  • Boregowda, S.C., Choate, R.E., Handy, R. 2012. Entropy Generation Analysis of Human Thermal Stress Responses. ISRN Thermodynamics.
  • Cabello, B., Mancebo, J. 2012. Work of breathing. In Applied Physiology in Intensive Care Medicine 1 (pp. 11-14). Springer, Berlin, Heidelberg.
  • Celli, B.R., MacNee, W.,Force, A.E.T. 2004. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. European Respiratory Journal, 23 (6), 932-946.
  • Crisafulli, E., Costi, S., Fabbri, L.M.,Clini, E.M. 2007. Respiratory muscles training in COPD patients. International Journal of Chronic Obstructive Pulmonary Disease, 2 (1), 19-25.
  • Çatak, J., Develi, A. C., Sorguven, E., Özilgen, M., Inal, H. S. 2015. Lifespan entropy generated by the masseter muscles during chewing: an indicator of the life expectancy?. International Journal of Exergy, 18(1), 46-67.
  • Çatak, J., Özilgen, M., Olcay, A. B., Yılmaz, B. 2018. Assessment of the work efficiency with exergy method in ageing muscles and healthy and enlarged hearts. International Journal of Exergy, 25(1), 1-33.
  • de Marco R, Accordini S, Marcon A, et al., 2011. Risk factors for chronic obstructive pulmonary disease in a European cohort of young adults. European Community Respiratory Health Survey (ECRHS). Am J Respir Crit Care Med 183:891-7.
  • Dincer, I., Cengel, Y. A. 2001. Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116-149.
  • Gayan-Ramirez, G., Koulouris, N., Roca, J., Decramer, M. . 2006. Respiratory and skeletal muscles in chronic obstructive pulmonary disease. European Respiratory Journal, 38, 201-223.
  • Gea, J., Agusti, A.,Roca, J. 2013. Pathophysiology of muscle dysfunction in COPD. Journal of Applied Physiology, 114 (9), 1222- 1234.
  • Genc, S., Sorguven, E., Kurnaz, I. A., Ozilgen, M. 2013. Exergetic efficiency of ATP production in neuronal glucose metabolism. International Journal of Exergy, 13(1), 60-84.
  • Guyton, A., Hall, J. 2011. In: Textbook of Medical Physiology, 12th edition, Elsevier Saunders, Philadelphia.
  • Hayflick, L. 2007. Entropy Explains Aging, Genetic Determinism Explains Longevity, and Undefined Terminology Explains Misunderstanding Both. PLoS Genetics, 3:2351-2354.
  • Henriques, I. B., Mady, C. E. K., Neto, C. A., Yanagihara, J. I., Junior, S. O. 2014. The effect of altitude and intensity of physical activity on the exergy efficiency of respiratory system. International Journal of Thermodynamics, 17(4), 265-273.
  • Jubrias, S. A., Vollestad, N. K., Gronka, R. K., Kushmerick, M. J. 2008. Contraction coupling efficiency of human first dorsal interosseous muscle. The Journal of physiology, 586(7), 1993-2002.
  • Luo, L.F. 2009. Entropy Production in a Cell and Reversal of Entropy Flow as an Anticancer Therapy. Frontiers of Physics in China, 4:122-136.
  • Maclntyre, N.R. 2008. Mechanisms of functional loss in patients with chronic lung disease. Respiratory Care, 53 (9), 1177-1184.
  • Mady, C. E. K., Ferreira, M. S., Yanagihara, J. I., Saldiva, P. H. N., de Oliveira Junior, S. 2012. Modeling the exergy behavior of human body. Energy, 45(1), 546-553.
  • Mannino, D.M.,Davis, K.J. 2006. Lung function decline and outcomes in an elderly population. Thorax, 61 (6), 472-477.
  • Martinez Garcia, M., Une, R. Y., de Oliveira Junior, S., Keutenedjian Mady, C. E. 2018. Exergy Analysis and Human Body Thermal Comfort Conditions: Evaluation of Different Body Compositions. Entropy, 20(4), 265.
  • Mathers, C. D., Loncar, D. 2006. Projections of global mortality and burden of disease from 2002 to 2030. PLoS medicine, 3(11), e442.
  • Mirici, A., Kocabaş, A. 2008. Tanımdan tedaviye kronik obstrüktif akciğer hastalığı. İstanbul: Galenos Yayıncılık.
  • Molnar, J., Thornton,B.S., Thornton-Benko, E., Varga, Z.G. 2011. The Second Law of Thermodynamics and Host-tumor Relationships: Concepts and Opportunities. INTECH Open Access Publisher.
  • Neto, C.A., Pellegrini, L.F., Ferreira, M.S., de Oliveira Jr, Yanagihara, J.I. 2010. Exergy Analysis of Human Respiration Under Physical Activity. International Journal of Thermodynamics, 13:105-109.
  • Özilgen M. 2011. Handbook of Food Process Modeling and Statistical Quality Control, CRC Books. 2nd ed. Taylor and Francis.
  • Özilgen, M. 2018a. Nutrition and production related energies and exergies of foods. Renewable and Sustainable Energy Reviews, 96, 275-295.
  • Özilgen, M. 2018b. Assessment of nutrition with Dincer's 6‐step approach of exergization. International Journal of Energy Research, 42(12), 3707-3710.
  • Pollack, G. H. 1990. Muscles & molecules: uncovering the principles of biological motion (pp. 9-38). Seattle, WA: Ebner & Sons Publishers.
  • Prigogine, I., Wiame, J.M. 1946. Biologie et Thermodynamique des Phénomènes Irréversibles. Experientia, 2:451-453.
  • Rahman, M.A. 2007. A Novel Method for Estimating the Entropy Generation Rate in a Human Body. Thermal Science, 11:75-92.
  • Schrödinger, E. 1944.What is life?: the physical aspect of the living cell; based on lectures delivered under the auspices of the Inst. at Trinity College, Dublin, in Feb. 1943. Cambridge University Press, Cambridge.
  • Semerciöz, A. S., Yılmaz, B., Özilgen, M. 2018. Entropy generation behaviour of the lean and obese rats shows the effect of the diet on the wasted life span work. International Journal of Exergy, 26(3), 359-391.
  • Shelledy, D. C., Peters, J. I. (Eds.). 2014. Respiratory Care: Patient Assessment and Care Plan Development. Jones & Bartlett Publishers.
  • Silva, C., Annamalai, K. 2008. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level. Entropy, 10:100-123.
  • Silva, C.A. and Annamalai, K. 2009. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Diet Composition and Caloric Restriction Diets. Journal of Thermodynamics.
  • Sorguven Oner, E., Ozilgen, M. 2015. First and second law work production efficiency of a muscle cell. International Journal of Exergy, 18(2), 142-156.
  • Spanghero, G. M., Albuquerque, C., Lazzaretti Fernandes, T., Hernandez, A. J., Keutenedjian Mady, C. E. 2018. Exergy Analysis of the Musculoskeletal System Efficiency during Aerobic and Anaerobic Activities. Entropy, 20(2), 119.
  • T.C. Sağlık Bakanlığı 2004. RSHMB Hıfzıssıhha Mektebi Müdürlüğü. Türkiye Hastalık Yükü Çalışması. Ankara: Aydoğdu Ofset; 2006. Sağlık Bakanlığı Yayın No: 701.
  • Von Stockar, U., Liu, J.S. 1999. Does Microbial Life Always Feed on Negative Entropy? Thermodynamic Analysis of Microbial Growth. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1412:191-211.
  • Whittemore AS, Perlin SA, DiCiccio Y., 1995. Chronic obstructive pulmonary disease in lifelong nonsmokers: results from NHANES. Am. J. Public Health 85:702–6.
  • WHO 2004. World Health Organization. The Global Burden of Disease: 2004, Update. Geneva (2004).
  • WHO 2008. World Health Organization. World Health Statics. COPD predicted to be third leading cause of death in 2030. http://www.who.int/respirotory/copd/World_Health_Statisitics. Erişim tarihi: 28 Eylül, 2018.
  • Yalçınkaya, B. H., Erikli, Ş., Özilgen, B. A., Olcay, A. B., Sorgüven, E., Özilgen, M. 2016. Thermodynamic analysis of the squid mantle muscles and giant axon during slow swimming and jet escape propulsion. Energy, 102, 537-549.
  • Zotin, A.I., Zotina, R.S. 1967. Thermodynamic Aspects of Developmental Biology. Journal of Theoretical Biology, 17:57-75.

Thermodynamic Analysis of Work of Breathing of Healthy Individuals and Patients with Chronic Obstructive Pulmonary Disease

Year 2018, Issue: 14, 145 - 151, 31.12.2018
https://doi.org/10.31590/ejosat.472665

Abstract

Chronic Obstructive Pulmonary Disease (COPD) is a disease characterized by lung inflammation and airway limitation due to cigarette smoke and other harmful particles. World Health Organization (WHO) predicts that COPD with high morbidity and mortality will become the third leading cause of death worldwide by 2030. Airway limitation and structural and functional changes of respiratory muscles decrease respiratory muscle strength and increase work of breathing. By the thermodynamic analysis of the respiratory muscles, the measurement of energy losses (entropy) and the destruction of the maximum useful work (exergy) can be calculated. The aim of this study was to compare the work of respiratory muscles of patients with COPD and healthy individuals by thermodynamic analysis. Thermodynamic analyses were performed by applying the first and second laws of thermodynamics to the work done by respiratory muscles. Thermodynamic analyses of respiratory muscles of COPD patients and healthy individuals were performed by mass, energy, exergy and entropy balances. As a result of the thermodynamic analysis of the work of breathing of COPD patients and healthy subjects, exergy destruction was calculated as 1.23x10-2 kJ/min and 6.01x10-3 kJ/min respectively. Entropy generation was 4.12x10-5 (kJ/K)/min in individuals with COPD while 2.02x10-5 (kJ/K)/min in healthy individuals. According to the results of energy balance analysis, the amount of glucose consumed for work of breathing was calculated as 0.32-0.16 mmol/min for COPD and healthy subjects, respectively. With this thermodynamic analysis, it was determined that the exergy destruction and entropy generation increased with the increase of work of breathing in patients with COPD.

References

  • Adams PF, Hendershot GE, Marano MA., 1996. Current estimates from the National Health Interview Survey,. National Center for Health Statistics. Vital Health Stat 1991; 200: 93.
  • Alvar, G., Agusti, N. 2005. Systemic Effects of Chronic Obstructive Pulmoner Disease. Proceedings of the American Thoracic Society, 2,367-370.
  • Agusti, A. 2007. Systemic effects of chronic obstructive pulmonary disease: what we know and what we don't know (but should). Proceedings of the American Thoracic Society, 4 (7), 522-525.
  • Aoki, I. 1994. Entropy Production in Human Life Span: A Thermodynamical Measure for Aging. Age, 17:29-31.
  • Balmer, R.T. 1982. Entropy and Aging in Biological Systems. Chemical Engineering Communications, 17:171-181.
  • Boregowda, S.C., Choate, R.E., Handy, R. 2012. Entropy Generation Analysis of Human Thermal Stress Responses. ISRN Thermodynamics.
  • Cabello, B., Mancebo, J. 2012. Work of breathing. In Applied Physiology in Intensive Care Medicine 1 (pp. 11-14). Springer, Berlin, Heidelberg.
  • Celli, B.R., MacNee, W.,Force, A.E.T. 2004. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. European Respiratory Journal, 23 (6), 932-946.
  • Crisafulli, E., Costi, S., Fabbri, L.M.,Clini, E.M. 2007. Respiratory muscles training in COPD patients. International Journal of Chronic Obstructive Pulmonary Disease, 2 (1), 19-25.
  • Çatak, J., Develi, A. C., Sorguven, E., Özilgen, M., Inal, H. S. 2015. Lifespan entropy generated by the masseter muscles during chewing: an indicator of the life expectancy?. International Journal of Exergy, 18(1), 46-67.
  • Çatak, J., Özilgen, M., Olcay, A. B., Yılmaz, B. 2018. Assessment of the work efficiency with exergy method in ageing muscles and healthy and enlarged hearts. International Journal of Exergy, 25(1), 1-33.
  • de Marco R, Accordini S, Marcon A, et al., 2011. Risk factors for chronic obstructive pulmonary disease in a European cohort of young adults. European Community Respiratory Health Survey (ECRHS). Am J Respir Crit Care Med 183:891-7.
  • Dincer, I., Cengel, Y. A. 2001. Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116-149.
  • Gayan-Ramirez, G., Koulouris, N., Roca, J., Decramer, M. . 2006. Respiratory and skeletal muscles in chronic obstructive pulmonary disease. European Respiratory Journal, 38, 201-223.
  • Gea, J., Agusti, A.,Roca, J. 2013. Pathophysiology of muscle dysfunction in COPD. Journal of Applied Physiology, 114 (9), 1222- 1234.
  • Genc, S., Sorguven, E., Kurnaz, I. A., Ozilgen, M. 2013. Exergetic efficiency of ATP production in neuronal glucose metabolism. International Journal of Exergy, 13(1), 60-84.
  • Guyton, A., Hall, J. 2011. In: Textbook of Medical Physiology, 12th edition, Elsevier Saunders, Philadelphia.
  • Hayflick, L. 2007. Entropy Explains Aging, Genetic Determinism Explains Longevity, and Undefined Terminology Explains Misunderstanding Both. PLoS Genetics, 3:2351-2354.
  • Henriques, I. B., Mady, C. E. K., Neto, C. A., Yanagihara, J. I., Junior, S. O. 2014. The effect of altitude and intensity of physical activity on the exergy efficiency of respiratory system. International Journal of Thermodynamics, 17(4), 265-273.
  • Jubrias, S. A., Vollestad, N. K., Gronka, R. K., Kushmerick, M. J. 2008. Contraction coupling efficiency of human first dorsal interosseous muscle. The Journal of physiology, 586(7), 1993-2002.
  • Luo, L.F. 2009. Entropy Production in a Cell and Reversal of Entropy Flow as an Anticancer Therapy. Frontiers of Physics in China, 4:122-136.
  • Maclntyre, N.R. 2008. Mechanisms of functional loss in patients with chronic lung disease. Respiratory Care, 53 (9), 1177-1184.
  • Mady, C. E. K., Ferreira, M. S., Yanagihara, J. I., Saldiva, P. H. N., de Oliveira Junior, S. 2012. Modeling the exergy behavior of human body. Energy, 45(1), 546-553.
  • Mannino, D.M.,Davis, K.J. 2006. Lung function decline and outcomes in an elderly population. Thorax, 61 (6), 472-477.
  • Martinez Garcia, M., Une, R. Y., de Oliveira Junior, S., Keutenedjian Mady, C. E. 2018. Exergy Analysis and Human Body Thermal Comfort Conditions: Evaluation of Different Body Compositions. Entropy, 20(4), 265.
  • Mathers, C. D., Loncar, D. 2006. Projections of global mortality and burden of disease from 2002 to 2030. PLoS medicine, 3(11), e442.
  • Mirici, A., Kocabaş, A. 2008. Tanımdan tedaviye kronik obstrüktif akciğer hastalığı. İstanbul: Galenos Yayıncılık.
  • Molnar, J., Thornton,B.S., Thornton-Benko, E., Varga, Z.G. 2011. The Second Law of Thermodynamics and Host-tumor Relationships: Concepts and Opportunities. INTECH Open Access Publisher.
  • Neto, C.A., Pellegrini, L.F., Ferreira, M.S., de Oliveira Jr, Yanagihara, J.I. 2010. Exergy Analysis of Human Respiration Under Physical Activity. International Journal of Thermodynamics, 13:105-109.
  • Özilgen M. 2011. Handbook of Food Process Modeling and Statistical Quality Control, CRC Books. 2nd ed. Taylor and Francis.
  • Özilgen, M. 2018a. Nutrition and production related energies and exergies of foods. Renewable and Sustainable Energy Reviews, 96, 275-295.
  • Özilgen, M. 2018b. Assessment of nutrition with Dincer's 6‐step approach of exergization. International Journal of Energy Research, 42(12), 3707-3710.
  • Pollack, G. H. 1990. Muscles & molecules: uncovering the principles of biological motion (pp. 9-38). Seattle, WA: Ebner & Sons Publishers.
  • Prigogine, I., Wiame, J.M. 1946. Biologie et Thermodynamique des Phénomènes Irréversibles. Experientia, 2:451-453.
  • Rahman, M.A. 2007. A Novel Method for Estimating the Entropy Generation Rate in a Human Body. Thermal Science, 11:75-92.
  • Schrödinger, E. 1944.What is life?: the physical aspect of the living cell; based on lectures delivered under the auspices of the Inst. at Trinity College, Dublin, in Feb. 1943. Cambridge University Press, Cambridge.
  • Semerciöz, A. S., Yılmaz, B., Özilgen, M. 2018. Entropy generation behaviour of the lean and obese rats shows the effect of the diet on the wasted life span work. International Journal of Exergy, 26(3), 359-391.
  • Shelledy, D. C., Peters, J. I. (Eds.). 2014. Respiratory Care: Patient Assessment and Care Plan Development. Jones & Bartlett Publishers.
  • Silva, C., Annamalai, K. 2008. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level. Entropy, 10:100-123.
  • Silva, C.A. and Annamalai, K. 2009. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Diet Composition and Caloric Restriction Diets. Journal of Thermodynamics.
  • Sorguven Oner, E., Ozilgen, M. 2015. First and second law work production efficiency of a muscle cell. International Journal of Exergy, 18(2), 142-156.
  • Spanghero, G. M., Albuquerque, C., Lazzaretti Fernandes, T., Hernandez, A. J., Keutenedjian Mady, C. E. 2018. Exergy Analysis of the Musculoskeletal System Efficiency during Aerobic and Anaerobic Activities. Entropy, 20(2), 119.
  • T.C. Sağlık Bakanlığı 2004. RSHMB Hıfzıssıhha Mektebi Müdürlüğü. Türkiye Hastalık Yükü Çalışması. Ankara: Aydoğdu Ofset; 2006. Sağlık Bakanlığı Yayın No: 701.
  • Von Stockar, U., Liu, J.S. 1999. Does Microbial Life Always Feed on Negative Entropy? Thermodynamic Analysis of Microbial Growth. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1412:191-211.
  • Whittemore AS, Perlin SA, DiCiccio Y., 1995. Chronic obstructive pulmonary disease in lifelong nonsmokers: results from NHANES. Am. J. Public Health 85:702–6.
  • WHO 2004. World Health Organization. The Global Burden of Disease: 2004, Update. Geneva (2004).
  • WHO 2008. World Health Organization. World Health Statics. COPD predicted to be third leading cause of death in 2030. http://www.who.int/respirotory/copd/World_Health_Statisitics. Erişim tarihi: 28 Eylül, 2018.
  • Yalçınkaya, B. H., Erikli, Ş., Özilgen, B. A., Olcay, A. B., Sorgüven, E., Özilgen, M. 2016. Thermodynamic analysis of the squid mantle muscles and giant axon during slow swimming and jet escape propulsion. Energy, 102, 537-549.
  • Zotin, A.I., Zotina, R.S. 1967. Thermodynamic Aspects of Developmental Biology. Journal of Theoretical Biology, 17:57-75.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Jale Çatak 0000-0002-2718-0967

Publication Date December 31, 2018
Published in Issue Year 2018 Issue: 14

Cite

APA Çatak, J. (2018). Kronik Obstrüktif Akciğer Hastaları ile Sağlıklı Bireylerin Solunum İş Yükünün Termodinamik Analizi. Avrupa Bilim Ve Teknoloji Dergisi(14), 145-151. https://doi.org/10.31590/ejosat.472665