Research Article
BibTex RIS Cite

Hydrogen Separation using Co-doped MOF-5/Polyimide Mixed Matrix Membrane for Energy Application

Year 2019, Issue: 15, 1 - 9, 31.03.2019
https://doi.org/10.31590/ejosat.456464

Abstract

Hydrogen is the most abundant element in
the universe, can be produced by water, stored easily, conversed into thermal,
mechanical and electrical energy so it can be considered as the energy carrier
of the future due to these characteristics . Hydrogen separation using
membrane method has the
advantage over other separation methods in that it is less energy intensive and
environmental friendly.
In order to membrane
properties become better and increase the performance of gas separation
membranes, mixed matrix membranes (MMMs)
have been developed.
MOFs as a new fillers in MMM with high surface area and pore volume enhance the
H2 gas separation properties.
In this study, MOF-5 and Co-doped MOF-5 particles were synthesized,
characterized and incorporated into polyimide to investigate the effect of
filler on the H2 gas permeation. Co-doped
MOF-5/PI MMMs with different loading rate (5wt.%, 10wt.%, 15wt.%) were
fabricated. The characterization was performed by different analysis
techniques. The gas analyses results showed that permeability of H2
gas in mixed matrix membrane including MOF-5 and Co-doped MOF-5 particules,
enhanced with increasing the loading rate (5wt.%, 10wt.%, 15wt.%) at room
temperature and pressure of 500 kPa. Furthermore, metal doped  MOFs/PI is the highest gas permeation properties
compared to pure PI and MOF-5/PI.

Supporting Institution

Ondokuz Mayıs Universitesi

Project Number

PYO.MUH. 1901.14.003

Thanks

The authors wish to thank the Ondokuz Mayıs Universitesi for its financial support through project PYO.MUH. 1901.14.003.

References

  • Adatoz, E., Avci, A. K., & Keskin, S. (2015). Opportunities and challenges of MOF-based membranes in gas separations. Separation and Purification Technology, 152(Supplement C), 207-237.
  • Adhikari, S., & Fernando, S. (2006). Hydrogen Membrane Separation Techniques. Industrial & Engineering Chemistry Research, 45(3), 875-881.
  • Arjmandi, M., & Pakizeh, M. (2014). Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment. Journal of Industrial and Engineering Chemistry, 20(5), 3857-3868.
  • Botas, J. A., Calleja, G., Sánchez-Sánchez, M., & Orcajo, M. G. (2010). Cobalt Doping of the MOF-5 Framework and Its Effect on Gas-Adsorption Properties. Langmuir, 26(8), 5300-5303.
  • Dincer, I. (2002). Technical, environmental and exergetic aspects of hydrogen energy systems. International Journal of Hydrogen Energy, 27(3), 265-285.
  • Feijani, E. A., Mahdavi, H., & Tavasoli, A. (2015). Poly(vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications. Chemical Engineering Research and Design, 96(Supplement C), 87-102.
  • Huang, L., Wang, H., Chen, J., Wang, Z., Sun, J., Zhao, D., & Yan, Y. (2003). Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and Mesoporous Materials, 58(2), 105-114.
  • Jain, I. P. (2009). Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy, 34(17), 7368-7378.
  • Li, H., Shi, W., Zhao, K., Li, H., Bing, Y., & Cheng, P. (2012). Enhanced Hydrostability in Ni-Doped MOF-5. Inorganic Chemistry, 51(17), 9200-9207. doi:10.1021/ic3002898
  • Li, J., Cheng, S., Zhao, Q., Long, P., & Dong, J. (2009). Synthesis and hydrogen-storage behavior of metal–organic framework MOF-5. International Journal of Hydrogen Energy, 34(3), 1377-1382.
  • Liu, Y., Ng, Z., Khan, E. A., Jeong, H.-K., Ching, C.-b., & Lai, Z. (2009). Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous and Mesoporous Materials, 118(1–3), 296-301.
  • Ozturk, B., & Demirciyeva, F. (2013). Comparison of biogas upgrading performances of different mixed matrix membranes. Chemical Engineering Journal, 222, 209-217.
  • Perez, E. V., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2009). Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 328(1), 165-173.
  • Sabouni, R., Kazemian, H., & Rohani, S. (2010). A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies. Chemical Engineering Journal, 165(3), 966-973.
  • Shao, L., Low, B. T., Chung, T.-S., & Greenberg, A. R. (2009). Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 327(1), 18-31.
  • Shu, Husain, S., & Koros, W. J. (2007). A General Strategy for Adhesion Enhancement in Polymeric Composites by Formation of Nanostructured Particle Surfaces. The Journal of Physical Chemistry C, 111(2), 652-657.
  • van den Berg, A. W. C., & Arean, C. O. (2008). Materials for hydrogen storage: current research trends and perspectives. Chemical Communications(6), 668-681.
  • Weng, T. H., Tseng, H. H., & Wey, M. Y. (2010). Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. International Journal of Hydrogen Energy, 35(13), 6971-6983.
  • Yang, J.-M., Liu, Q., & Sun, W.-Y. (2014a). Co(II)-doped MOF-5 nano/microcrystals: Solvatochromic behaviour, sensing solvent molecules and gas sorption property. Journal of Solid State Chemistry, 218(Supplement C), 50-55.
  • Yang, J.-M., Liu, Q., & Sun, W.-Y. (2014b). Shape and size control and gas adsorption of Ni(II)-doped MOF-5 nano/microcrystals. Microporous and Mesoporous Materials, 190(Supplement C), 26-31.
  • Züttel, A. (2003). Materials for hydrogen storage. Materials Today, 6(9), 24-33.

Enerji Uygulamasında Co katkılı MOF-5/Poliimit Karışık Matriksli Membranlar Kullanarak Hidrojen Ayrımı

Year 2019, Issue: 15, 1 - 9, 31.03.2019
https://doi.org/10.31590/ejosat.456464

Abstract

Evrende bol miktarda
bulunan hidrojen, su tarafından üretilebilir, kolayca depolanabilir, termal,
mekanik ve elektrik enerjisine dönüşebilir, bu özelliklerinden dolayı geleceğin
enerji taşıyıcısı olarak düşünülebilir.
Membran metodu kullanılarak
hidrojen ayırma, diğer ayırma yöntemlerine göre daha az enerji yoğunluğu ve
çevre dostu olması gibi olumlu yönlere sahiptir.
Gaz ayırma membranlarının
performansının arttırılması ve membran özelliklerinin daha iyi hale gelmesi
için karışık matris membranlar (MMM'ler) geliştirilmiştir.
Karışık
matriksli membranlarda dolgu maddesi olarak kullanılabilen, yüksek
yüzey alanı ve gözenek hacmine sahip MOF'lar, H2
gazı ayırma özelliklerini arttırmaktadır.
Bu çalışmada, MOF-5 ve Co
katkılı MOF-5 partikülleri sentezlenmiş, karakterize edilmiş ve dolgu
maddesinin H2 gaz geçirgenliği üzerindeki etkisini araştırmak için
poliimid içine katılmıştır.
Farklı yükleme oranlarına
sahip katkılı MOF-5/PI MMM'ler (ağırlıkça % 5, % 10 ve % 15) üretilmiştir ve
karakterizasyonları farklı analiz teknikleriyle gerçekleştirilmiştir.
Gaz analiz sonuçları, MOF-5 ve Co katkılı MOF-5 dahil
olmak üzere karışık matriksli membranda H2 gazının geçirgenliğinin,
oda sıcaklığında ve 500 kPa'lık basınç altında farklı yükleme oranlarında
(ağırlıkça% 5,% 10,% 15) arttığını göstermiştir. Ayrıca, metal katkılı
MOF/PI’in, saf PI ve MOF-5/PI ile karşılaştırıldığında en yüksek gaz
geçirgenlik özelliklerine sahip olduğu görülmüştür.

Project Number

PYO.MUH. 1901.14.003

References

  • Adatoz, E., Avci, A. K., & Keskin, S. (2015). Opportunities and challenges of MOF-based membranes in gas separations. Separation and Purification Technology, 152(Supplement C), 207-237.
  • Adhikari, S., & Fernando, S. (2006). Hydrogen Membrane Separation Techniques. Industrial & Engineering Chemistry Research, 45(3), 875-881.
  • Arjmandi, M., & Pakizeh, M. (2014). Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment. Journal of Industrial and Engineering Chemistry, 20(5), 3857-3868.
  • Botas, J. A., Calleja, G., Sánchez-Sánchez, M., & Orcajo, M. G. (2010). Cobalt Doping of the MOF-5 Framework and Its Effect on Gas-Adsorption Properties. Langmuir, 26(8), 5300-5303.
  • Dincer, I. (2002). Technical, environmental and exergetic aspects of hydrogen energy systems. International Journal of Hydrogen Energy, 27(3), 265-285.
  • Feijani, E. A., Mahdavi, H., & Tavasoli, A. (2015). Poly(vinylidene fluoride) based mixed matrix membranes comprising metal organic frameworks for gas separation applications. Chemical Engineering Research and Design, 96(Supplement C), 87-102.
  • Huang, L., Wang, H., Chen, J., Wang, Z., Sun, J., Zhao, D., & Yan, Y. (2003). Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and Mesoporous Materials, 58(2), 105-114.
  • Jain, I. P. (2009). Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy, 34(17), 7368-7378.
  • Li, H., Shi, W., Zhao, K., Li, H., Bing, Y., & Cheng, P. (2012). Enhanced Hydrostability in Ni-Doped MOF-5. Inorganic Chemistry, 51(17), 9200-9207. doi:10.1021/ic3002898
  • Li, J., Cheng, S., Zhao, Q., Long, P., & Dong, J. (2009). Synthesis and hydrogen-storage behavior of metal–organic framework MOF-5. International Journal of Hydrogen Energy, 34(3), 1377-1382.
  • Liu, Y., Ng, Z., Khan, E. A., Jeong, H.-K., Ching, C.-b., & Lai, Z. (2009). Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous and Mesoporous Materials, 118(1–3), 296-301.
  • Ozturk, B., & Demirciyeva, F. (2013). Comparison of biogas upgrading performances of different mixed matrix membranes. Chemical Engineering Journal, 222, 209-217.
  • Perez, E. V., Balkus, K. J., Ferraris, J. P., & Musselman, I. H. (2009). Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 328(1), 165-173.
  • Sabouni, R., Kazemian, H., & Rohani, S. (2010). A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies. Chemical Engineering Journal, 165(3), 966-973.
  • Shao, L., Low, B. T., Chung, T.-S., & Greenberg, A. R. (2009). Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future. Journal of Membrane Science, 327(1), 18-31.
  • Shu, Husain, S., & Koros, W. J. (2007). A General Strategy for Adhesion Enhancement in Polymeric Composites by Formation of Nanostructured Particle Surfaces. The Journal of Physical Chemistry C, 111(2), 652-657.
  • van den Berg, A. W. C., & Arean, C. O. (2008). Materials for hydrogen storage: current research trends and perspectives. Chemical Communications(6), 668-681.
  • Weng, T. H., Tseng, H. H., & Wey, M. Y. (2010). Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. International Journal of Hydrogen Energy, 35(13), 6971-6983.
  • Yang, J.-M., Liu, Q., & Sun, W.-Y. (2014a). Co(II)-doped MOF-5 nano/microcrystals: Solvatochromic behaviour, sensing solvent molecules and gas sorption property. Journal of Solid State Chemistry, 218(Supplement C), 50-55.
  • Yang, J.-M., Liu, Q., & Sun, W.-Y. (2014b). Shape and size control and gas adsorption of Ni(II)-doped MOF-5 nano/microcrystals. Microporous and Mesoporous Materials, 190(Supplement C), 26-31.
  • Züttel, A. (2003). Materials for hydrogen storage. Materials Today, 6(9), 24-33.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hülya Aykaç Özen

Bahtiyar Öztürk 0000-0002-3385-0701

Project Number PYO.MUH. 1901.14.003
Publication Date March 31, 2019
Published in Issue Year 2019 Issue: 15

Cite

APA Aykaç Özen, H., & Öztürk, B. (2019). Hydrogen Separation using Co-doped MOF-5/Polyimide Mixed Matrix Membrane for Energy Application. Avrupa Bilim Ve Teknoloji Dergisi(15), 1-9. https://doi.org/10.31590/ejosat.456464