Research Article
BibTex RIS Cite

Epoksi Polimerlerin Gama Işını Zırhlama Performanslarına PbO ve BaO Katkılarının Etkisinin Deneysel Olarak Karşılaştırılması.

Year 2019, Issue: 16, 256 - 266, 31.08.2019
https://doi.org/10.31590/ejosat.553952

Abstract

Bu
çalışma, iki farklı katkı malzemesi (baryum oksit ve kurşun oksit) kullanılarak
hazırlanan epoksi kompozitlerinin gama ışını zırhlama yeteneklerini araştırmaya
yöneliktir. Düşük ağırlıklı radyasyon zırhlayıcısı elde etmek için Epoksi / PbO
ve Epoksi / BaO kompozitler, ağırlık olarak % 10, % 20 ve % 40 katkı malzemeleri
kullanılarak üretilmiştir. Hazırlanan numunelerin ağırlığı kurşun, çelik, beton
vb. bazı geleneksel zırhlayıcı malzemelerle karşılaştırılmıştır. Saf epoksi ve
kompozitlerin gama ışını zırhlama performansı deneysel olarak NaI (Tl)
detektörü kullanılarak ölçülmüştür. Deneylerde, gama ışını kaynağı olarak 81
keV ve 356 keV enerjili Ba-133 nokta radyoaktif kaynağı kullanılmıştır.
Kompozitlerin gama ışını zırhlama parametreleri olarak kütle azaltma katsayısı,
yarı kalınlık değeri, onda bir kalınlık değeri ve ortalama serbest yol mesafesi
dikkate alınmıştır. PbO ve BaO ilaveli epoksi kompozitlerinin ilgili
parametrelerinin sonuçları karşılaştırıldığında, PbO katkılı epoksi
kompozitinin gama ışını zırhlama performansının, BaO katkısıyla da elde
edilebileceğini ortaya çıkarmıştır. Bununla birlikte, PbO katkılı epoksi ile aynı
performansı elde etmek için, epoksiye PbO’ya göre iki katı kadar fazla BaO
katkılanmalıdır. Öte yandan, ağırlıkça % 40 BaO katkılı epoksi kompozitin, 81
keV ve 356 keV enerjili fotonlar için çelik, beton ve Gd2O3
nanoparçacık katkılanmış epoksi kompozitlerden daha iyi bir radyasyon zırhlama
performansı sergilediği tespit edilmiştir. Bu nedenle, bir epoksi/BaO kompoziti
kullanılarak düşük ağırlıklı ve toksik olmayan bir gama ışını zırhlama malzemesi
üretilebilir.

References

  • Azman, N. N., Siddiqui, S., Hart, R., & Low, I.-M. (2013). Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites. Applied Radiation and Isotopes, 71(1), 62-67.
  • Büyükyıldız, M., Taşdelen, M., Karabul, Y., Çağlar, M., İçelli, O., & Boydaş, E. (2018). Measurement of photon interaction parameters of high-performance polymers and their composites. Radiation Effects and Defects in Solids, 173(5-6), 474-488.
  • Eisenbud, M., & Gesell, T. F. (1997). Environmental radioactivity from natural, industrial and military sources: from natural, industrial and military sources: Elsevier.
  • Hou, Y., Li, M., Gu, Y., Yang, Z., Li, R., & Zhang, Z. (2018). Gamma ray shielding property of tungsten powder modified continuous basalt Fiber reinforced epoxy matrix composites. Polymer Composites, 39(S4), E2106-E2115.
  • Hussain, R., Haq, Z.-U., & Mohammad, D. (1997). A study of the shielding properties of poly ethylene glycol-lead oxide composite. J Islamic Acad Sci, 10(3), 81-84. Kucuk, N., Cakir, M., & Isitman, N. A. (2012). Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers. Radiation protection dosimetry, 153(1), 127-134.
  • Li, R., Gu, Y., Wang, Y., Yang, Z., Li, M., & Zhang, Z. (2017). Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Materials Research Express, 4(3), 035035.
  • Li, R., Gu, Y., Zhang, G., Yang, Z., Li, M., & Zhang, Z. (2017). Radiation shielding property of structural polymer composite: continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Composites Science and Technology, 143, 67-74.
  • Ms, A., Mondal, A., & Tripathi, R. (2010). Radiation Protection Manual. Sayyed, M. (2016). Investigation of shielding parameters for smart polymers. Chinese journal of physics, 54(3), 408-415.
  • Singh, K., Singh, H., Sharma, V., Nathuram, R., Khanna, A., Kumar, R., . . . Sahota, H. S. (2002). Gamma-ray attenuation coefficients in bismuth borate glasses.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194(1), 1-6.
  • Singh, N., Singh, K. J., Singh, K., & Singh, H. (2006). Gamma-ray attenuation studies of PbO–BaO–B2O3 glass system. Radiation Measurements, 41(1), 84-88.
  • Singh, S., Kumar, A., Singh, D., Thind, K. S., & Mudahar, G. S. (2008). Barium–borate–flyash glasses: as radiation shielding materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(1), 140-146.
  • Singh, V. P., Medhat, M., & Shirmardi, S. (2015). Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiation Physics and Chemistry, 106, 255-260.
  • Soylu, H., Lambrecht, F. Y., & Ersöz, O. (2015). Gamma radiation shielding efficiency of a new lead-free composite material. Journal of Radioanalytical and Nuclear Chemistry, 305(2), 529-534. Tekin, H. O., & Manici, T. (2017). Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques, 28(7), 95.
  • Kucuk, N., Cakir, M., & Isitman, N. A. (2012). Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers. Radiation protection dosimetry, 153(1), 127-134
  • Sayyed, M. (2016). Investigation of shielding parameters for smart polymers. Chinese journal of physics, 54(3), 408-415.
  • Tekin, H. O., & Manici, T. (2017). Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques, 28(7), 95.

Experimental Comparison of PbO and BaO Addition Effect on Gamma Ray Shielding Performance of Epoxy Polymer

Year 2019, Issue: 16, 256 - 266, 31.08.2019
https://doi.org/10.31590/ejosat.553952

Abstract

This study was devoted to investigate the gamma ray
shielding abilities of the epoxy composites prepared by using two different
reinforcing materials: barium oxide and lead oxide.  The Epoxy/PbO and Epoxy/BaO composites were
produced by using 10 wt.%, 20 wt.%, and 40 wt.% reinforcing materials to obtain
low weight radiation shielders. The heaviness of the samples were compared with
some conventional shielding materials such as lead, steel, concrete etc. The
gamma ray shielding performance of the pure epoxy and the composites were
measured experimentally by using NaI(Tl) detector. In the experiments, Ba-133
point radioactive source was also utilized as a gamma ray source with the 81
keV and 356 keV energies. As the gamma ray shielding parameters of the
composites, the mass attenuation coefficient, half layer value and tenth layer
value thicknesses and mean free path distance were considered. After comparison
of the related parameters of the PbO and BaO added epoxy composites, it was
revealed that the gamma radiation shielding performance of the PbO added epoxy
composite can also be obtained by adding BaO to the epoxy. However, to achieve
the same performance, BaO should be added twice as much as the PbO additive
percentage. On the other hand, it was determined that 40 wt.% BaO added epoxy
composite exhibits a better radiation shielding performance than steel,
concrete and Gd2O3 nanoparticle added epoxy composite for
the photons with 81 keV and 356 keV energies. Thus, a lightweight and non-toxic
gamma-ray shielding material can be produced by using an epoxy/BaO composite.

References

  • Azman, N. N., Siddiqui, S., Hart, R., & Low, I.-M. (2013). Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide—epoxy composites. Applied Radiation and Isotopes, 71(1), 62-67.
  • Büyükyıldız, M., Taşdelen, M., Karabul, Y., Çağlar, M., İçelli, O., & Boydaş, E. (2018). Measurement of photon interaction parameters of high-performance polymers and their composites. Radiation Effects and Defects in Solids, 173(5-6), 474-488.
  • Eisenbud, M., & Gesell, T. F. (1997). Environmental radioactivity from natural, industrial and military sources: from natural, industrial and military sources: Elsevier.
  • Hou, Y., Li, M., Gu, Y., Yang, Z., Li, R., & Zhang, Z. (2018). Gamma ray shielding property of tungsten powder modified continuous basalt Fiber reinforced epoxy matrix composites. Polymer Composites, 39(S4), E2106-E2115.
  • Hussain, R., Haq, Z.-U., & Mohammad, D. (1997). A study of the shielding properties of poly ethylene glycol-lead oxide composite. J Islamic Acad Sci, 10(3), 81-84. Kucuk, N., Cakir, M., & Isitman, N. A. (2012). Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers. Radiation protection dosimetry, 153(1), 127-134.
  • Li, R., Gu, Y., Wang, Y., Yang, Z., Li, M., & Zhang, Z. (2017). Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite. Materials Research Express, 4(3), 035035.
  • Li, R., Gu, Y., Zhang, G., Yang, Z., Li, M., & Zhang, Z. (2017). Radiation shielding property of structural polymer composite: continuous basalt fiber reinforced epoxy matrix composite containing erbium oxide. Composites Science and Technology, 143, 67-74.
  • Ms, A., Mondal, A., & Tripathi, R. (2010). Radiation Protection Manual. Sayyed, M. (2016). Investigation of shielding parameters for smart polymers. Chinese journal of physics, 54(3), 408-415.
  • Singh, K., Singh, H., Sharma, V., Nathuram, R., Khanna, A., Kumar, R., . . . Sahota, H. S. (2002). Gamma-ray attenuation coefficients in bismuth borate glasses.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 194(1), 1-6.
  • Singh, N., Singh, K. J., Singh, K., & Singh, H. (2006). Gamma-ray attenuation studies of PbO–BaO–B2O3 glass system. Radiation Measurements, 41(1), 84-88.
  • Singh, S., Kumar, A., Singh, D., Thind, K. S., & Mudahar, G. S. (2008). Barium–borate–flyash glasses: as radiation shielding materials. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(1), 140-146.
  • Singh, V. P., Medhat, M., & Shirmardi, S. (2015). Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiation Physics and Chemistry, 106, 255-260.
  • Soylu, H., Lambrecht, F. Y., & Ersöz, O. (2015). Gamma radiation shielding efficiency of a new lead-free composite material. Journal of Radioanalytical and Nuclear Chemistry, 305(2), 529-534. Tekin, H. O., & Manici, T. (2017). Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques, 28(7), 95.
  • Kucuk, N., Cakir, M., & Isitman, N. A. (2012). Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers. Radiation protection dosimetry, 153(1), 127-134
  • Sayyed, M. (2016). Investigation of shielding parameters for smart polymers. Chinese journal of physics, 54(3), 408-415.
  • Tekin, H. O., & Manici, T. (2017). Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nuclear Science and Techniques, 28(7), 95.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Kılıç 0000-0003-1882-0405

Yaren Ergin This is me 0000-0003-4701-2546

Yaşar Karabul This is me 0000-0002-0789-556X

Zeynep Güven Özdemir 0000-0001-5085-5814

Publication Date August 31, 2019
Published in Issue Year 2019 Issue: 16

Cite

APA Kılıç, M., Ergin, Y., Karabul, Y., Güven Özdemir, Z. (2019). Experimental Comparison of PbO and BaO Addition Effect on Gamma Ray Shielding Performance of Epoxy Polymer. Avrupa Bilim Ve Teknoloji Dergisi(16), 256-266. https://doi.org/10.31590/ejosat.553952