Research Article
BibTex RIS Cite

Pesticide removal by photocatalytic methods: Clothianidin example

Year 2019, Issue: 16, 855 - 862, 31.08.2019
https://doi.org/10.31590/ejosat.600236

Abstract

Pesticides from neonicotinoids family are known to be insecticides that are effective on neural tissues acting chemically similar to nicotine. Their detrimental effects, especially on honey-bee colonies, are well researched. Their other adverse ecological effects leaded restrictions on the usage of several members of this pesticide class in many countries. Clothianidin, an insecticide species from the group of neonicotinoids, is one of the banned insecticide species that can be found in environmental environments such as water and soil. Clothianidin is known as a persistent, mobile, and resistant to hydrolyze and has the potential to leach into groundwater or reach surface waters. It is important to determine the photodegradation ability of Clothianidin under the visible light and develop treatment formulations in the management of wastewaters polluted with this insecticide. This study aimed to investigate the efficacy of Clothianidine removal by advanced oxidation methods. For this purpose, UV-A, UV-C stability was investigated and additional effects of TiO2 and oxygen addition on oxidation options were determined. Clothianidin solution was subjected to UV-A, UV-C, UV-A+TiO2, and UV-A+TiO2+O2 for changing durations between 0-120 minutes, and degradation process was monitored by conducting HPLC analyses. UV-A stability experiments showed that Clothianidin solution stayed stabile and did not degrade under UV-A. UV-A application conducted in the presence of TiO2 showed an increasing removal efficiency by time compared to UV-A application. UV-A + TiO2 application resulted in removal efficiency of 42%. When oxygen was introduced to the UV-A+TiO2 application, oxygen contributed to the degradation of Clothianidin and the removal efficiency increased to 69% from 42%. Removal efficiency up to 100% was achieved when UV-C was applied for a short time, such as 5 minutes. The experimental findings showed that photocatalytic removal of Clothianidine pesticide was possible when TiO2 and oxygen were added and especially UV-C method was found to be more effective than the other methods and can be a preferred step in treatment solutions.

References

  • Affam, A. C., & Chaudhuri, M. (2013). Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. Journal of Environmental Management, 130, 160-165. doi: 10.1016/j.jenvman.2013.08.058
  • Anderson, J. C., Dubetz, C., & Palace, V. P. (2015). Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects. Science of The Total Environment, 505, 409-422. doi: 10.1016/j.scitotenv.2014.09.090
  • Badawy, M. I., Ghaly, M. Y., & Gad-Allah, T. (2006). Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. 194(1-3), 166-175.
  • Banic, N. D., Abramovic, B. F., Sojic, D. V., Krstic, J. B., Fincur, N. L., & Bakovic, I. P. (2016). Efficiency of neonicotinoids photocatalytic degradation by using annular slurry reactor. Chemical Engineering Journal, 286, 184-190. doi: 10.1016/j.cej.2015.10.076
  • Burrows, H. D., Canle, M., Santaballa, J. A., & Steenken, S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B-Biology, 67(2), 71-108. doi: Doi 10.1016/S1011-1344(02)00277-4
  • Bustos, N., Cruz-Alcalde, A., Iriel, A., Cirelli, A. F., & Sans, C. (2019). Sunlight and UVC-254 irradiation induced photodegradation of organophosphorus pesticide dichlorvos in aqueous matrices. Science of The Total Environment, 649, 592-600. doi: 10.1016/j.scitotenv.2018.08.254
  • Cernigoj, U., Stangar, U. L., & Trebse, P. (2007). Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Applied Catalysis B-Environmental, 75(3-4), 229-238. doi: 10.1016/j.apcatb.2007.04.014
  • Chiron, S., Fernández-Alba, A. R., Rodriguez, A., & García-Calvo, E. (2000). Pesticide chemical oxidation: state-of-the-art. Water Research, 34, 366-377.
  • Chu, W., & Wong, C. C. (2004). The photocatalytic degradation of dicamba in TiO(2) suspensions with the help of hydrogen peroxide by different near UV irradiations. Water Research, 38(4), 1037-1043. doi: 10.1016/j.watres.2003.10.037
  • De Laat, J., Gallard, H., Ancelin, S., & Legube, B. (1999). Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV and Fe(II) or Fe(III)/H2O2. Chemosphere, 39(15), 2693-2706. doi: Doi 10.1016/S0045-6535(99)00204-0
  • EU. (2013). Commission Implementing Regulation (EU) No 485/2013 of 24 May 2013. Official Journal of the European Union, L 139/12.
  • Fırat, Ö., & Aytekin, T. (2018). Neonikotinoid insektisit thiamethoxamın Oreochromis niloticus’ta oksidatif stres parametreleri üzerine etkisi. BAUN Fen Bil. Enst. Dergisi, 20(2), 224-234.
  • Fujishima, A., & Zhang, X. T. (2006). Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 9(5-6), 750-760. doi: 10.1016/j.crci.2005.02.055
  • Goulson, D. (2013). REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977-987. doi: 10.1111/1365-2664.12111
  • Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: A historical overview and future prospects. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 44(12), 8269-8285. doi: 10.1143/Jjap.44.8269
  • Jeschke, P., & Nauen, R. (2008). Neonicotinoids - from zero to hero in insecticide chemistry. Pest Management Science, 64(11), 1084-1098. doi: 10.1002/ps.1631
  • Jeschke, P., Nauen, R., Schindler, M., & Elbert, A. (2011). Overview of the Status and Global Strategy for Neonicotinoids. Journal of Agricultural and Food Chemistry, 59(7), 2897-2908. doi: 10.1021/jf101303g
  • Kohler, H. R., & Triebskorn, R. (2013). Wildlife Ecotoxicology of Pesticides: Can We Track Effects to the Population Level and Beyond? science, 341(6147), 759-765. doi: 10.1126/science.1237591
  • Konstantinou, I. K., & Albanis, T. A. (2003). Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways. Applied Catalysis B: Environmental, 42, 319-335.
  • Kovganko, N. V., & Kashkan, Z. N. (2004). Advances in the synthesis of neonicotinoids. Russian Journal of Organic Chemistry, 40(12), 1709-1726. doi: DOI 10.1007/s11178-005-0089-y
  • Le, T. D. H., Scharmuller, A., Kattwinkel, M., Kuhne, R., Schuurnann, G., & Schafer, R. B. (2017). Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicology and Environmental Safety, 145, 135-141. doi: 10.1016/j.ecoenv.2017.07.027
  • Lorret, O., Francova, D., Waldner, G., & Stelzer, N. (2009). W-doped titania nanoparticles for UV and visible-light photocatalytic reactions. Applied Catalysis B-Environmental, 91(1-2), 39-46. doi: 10.1016/j.apcatb.2009.05.005
  • Martin, M. M. B., Perez, J. A. S., Lopez, J. L. C., Oller, I., & Rodriguez, S. M. (2009). Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation. Water Research, 43(3), 653-660. doi: 10.1016/j.watres.2008.11.020
  • Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J. L., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114(19), 9919-9986. doi: 10.1021/cr5001892
  • TOB. (2018). Neonicotinoid Grubu Aktif Maddelerin Yasaklanması ve Kısıtlanması Kararı. TC Tarım ve Orman Bakanlığı, Gıda ve Kontrol Genel Müdürlügü, Karar Yazısı, Sayı :81466379-320.04.02-E.3768012, Tarih: 19.12.2018.
  • Tokumoto, J., Danjo, M., Kobayashi, Y., Kinoshita, K., Omotehara, T., Tatsumi, A., . . . Hoshi, N. (2013). Effects of Exposure to Clothianidin on the Reproductive System of Male Quails. Journal of Veterinary Medical Science, 75(6), 755-760. doi: 10.1292/jvms.12-0544
  • USEPA. (2003). Fact Sheet for Clothianidin. United States Environmental Protection Agency (7501C), Office of Prevention, Pesticides and Toxic Substances, Name of Chemical: Clothianidin, Reason for Issuance: Conditional Registration, Date Issued: May 30, 2003.
  • Whitehorn, P. R., O'Connor, S., Wackers, F. L., & Goulson, D. (2012). Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production. science, 336(6079), 351-352. doi: 10.1126/science.1215025
  • Yamamoto, A., Terao, T., Hisatomi, H., Kawasaki, H., & Arakawa, R. (2012). Evaluation of river pollution of neonicotinoids in Osaka City (Japan) by LC/MS with dopant-assisted photoionisation. Journal of Environmental Monitoring, 14(8), 2189-2194. doi: 10.1039/c2em30296a
  • Zabar, R., Dolenc, D., Jerman, T., Franko, M., & Trebse, P. (2011). Photolytic and photocatalytic degradation of 6-chloronicotinic acid. Chemosphere, 85(5), 861-868. doi: 10.1016/j.chemosphere.2011.06.107

Fotokatalitik yöntemlerle pestisit giderimi: Clothianidin örneği

Year 2019, Issue: 16, 855 - 862, 31.08.2019
https://doi.org/10.31590/ejosat.600236

Abstract

Neonikotinoid grubu
pestisitler, nikotine benzeyen davranışlarıyla sinirdokularını etkileyen insektisitlerdir.
Bu insektisit grubunun özellikle balarısı kolonileri üzerindeki ölümcül
etkileri bilinmektedir. Bunun yanındaki diğer olumsuz ekolojik etkileri
nedeniyle bazı türlerinin kullanımı çeşitli ülkelerde yasaklanmıştır.
Neonikotinoid grubundan bir insektisit türü olan Clothianidin, su ve toprak
gibi çevresel ortamlarda bulunabilen yasaklanmış insektisit türlerinden
biridir. Clothianidin kalıcı ve yüksek hareketliliğe sahip, hidrolize dirençli,
yeraltısuyuna ve yüzeysel sulara sızma potansiyeline sahip bir neonikotinoid
grubu pestisit türü olarak bilinmektedir. Clothianidinin görünür ışık karşısındaki
fotodegradasyon davranışını belirlemek ve arıtma formülasyonları geliştirmek bu
kirleticilerle kirlenmiş atıksuların yönetiminde önemlidir. Bu çalışmanın
amacı, Clothinanidin’in ileri oksidasyon yöntemleriyle giderim etkinliğini
araştırmaktır. Çalışma kapsamında Clothianidin’in UV-A, UV-C ışınları
karşısındaki kararlılığının yanında TiO2 ve oksijen desteği ile su
içerisindeki fotokatalitik bozunması da araştırılmıştır. Clothianidinin sulu çözeltisi
0-120 dakika arasında değişen süreler boyunca UV-A, UV-A+TiO2,
UV-A+TiO2+O2 ve UV-C uygulamalarına tabi tutulmuş, süreç
esnasında değişen Clothianidin konsantrasyonu HPLC analizleriyle izlenmiştir.
UV-A uygulamasına tabi tutulan çözeltideki Clothianidin düzeyinin sabit
kaldığı, kirleticinin herhangi bir bozunmaya uğramadığı gözlenmiştir. Ancak TiO2
varlığında yapılan UV-A uygulaması, herhangi bir giderim etkisi göstermeyen
UV-A uygulamasına göre uygulama süresiyle artan bir Clothianidin giderim
eğilimiyle sonuçlanmıştır.  UV-A+TiO2
uygulamasının %42 oranında bir giderimle sonuçlandığı görülmüştür. UV-A+TiO2
sürecine oksijen ilave edilerek yapılan uygulamada ise oksijenin
Clothianidin’in bozunmasına olumlu bir etkisinin olduğu, giderim veriminin
artarak %42’den %69 düzeyine ulaştığı görülmüştür. UV-C uygulaması ile 5 dakika
gibi kısa bir sürede %99’a varan bir giderim verimi elde edilmiştir. TiO2
ve oksijen varlığında gerçekleştirilen fotokatalik yöntemin ve özellikle UV-C uygulamasının
diğer yöntemlerden çok daha etkili olduğu ve arıtma çözümlerinde tercih edilebileceği
sonucuna varılmıştır.

References

  • Affam, A. C., & Chaudhuri, M. (2013). Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. Journal of Environmental Management, 130, 160-165. doi: 10.1016/j.jenvman.2013.08.058
  • Anderson, J. C., Dubetz, C., & Palace, V. P. (2015). Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects. Science of The Total Environment, 505, 409-422. doi: 10.1016/j.scitotenv.2014.09.090
  • Badawy, M. I., Ghaly, M. Y., & Gad-Allah, T. (2006). Advanced oxidation processes for the removal of organophosphorus pesticides from wastewater. 194(1-3), 166-175.
  • Banic, N. D., Abramovic, B. F., Sojic, D. V., Krstic, J. B., Fincur, N. L., & Bakovic, I. P. (2016). Efficiency of neonicotinoids photocatalytic degradation by using annular slurry reactor. Chemical Engineering Journal, 286, 184-190. doi: 10.1016/j.cej.2015.10.076
  • Burrows, H. D., Canle, M., Santaballa, J. A., & Steenken, S. (2002). Reaction pathways and mechanisms of photodegradation of pesticides. Journal of Photochemistry and Photobiology B-Biology, 67(2), 71-108. doi: Doi 10.1016/S1011-1344(02)00277-4
  • Bustos, N., Cruz-Alcalde, A., Iriel, A., Cirelli, A. F., & Sans, C. (2019). Sunlight and UVC-254 irradiation induced photodegradation of organophosphorus pesticide dichlorvos in aqueous matrices. Science of The Total Environment, 649, 592-600. doi: 10.1016/j.scitotenv.2018.08.254
  • Cernigoj, U., Stangar, U. L., & Trebse, P. (2007). Degradation of neonicotinoid insecticides by different advanced oxidation processes and studying the effect of ozone on TiO2 photocatalysis. Applied Catalysis B-Environmental, 75(3-4), 229-238. doi: 10.1016/j.apcatb.2007.04.014
  • Chiron, S., Fernández-Alba, A. R., Rodriguez, A., & García-Calvo, E. (2000). Pesticide chemical oxidation: state-of-the-art. Water Research, 34, 366-377.
  • Chu, W., & Wong, C. C. (2004). The photocatalytic degradation of dicamba in TiO(2) suspensions with the help of hydrogen peroxide by different near UV irradiations. Water Research, 38(4), 1037-1043. doi: 10.1016/j.watres.2003.10.037
  • De Laat, J., Gallard, H., Ancelin, S., & Legube, B. (1999). Comparative study of the oxidation of atrazine and acetone by H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV and Fe(II) or Fe(III)/H2O2. Chemosphere, 39(15), 2693-2706. doi: Doi 10.1016/S0045-6535(99)00204-0
  • EU. (2013). Commission Implementing Regulation (EU) No 485/2013 of 24 May 2013. Official Journal of the European Union, L 139/12.
  • Fırat, Ö., & Aytekin, T. (2018). Neonikotinoid insektisit thiamethoxamın Oreochromis niloticus’ta oksidatif stres parametreleri üzerine etkisi. BAUN Fen Bil. Enst. Dergisi, 20(2), 224-234.
  • Fujishima, A., & Zhang, X. T. (2006). Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie, 9(5-6), 750-760. doi: 10.1016/j.crci.2005.02.055
  • Goulson, D. (2013). REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50(4), 977-987. doi: 10.1111/1365-2664.12111
  • Hashimoto, K., Irie, H., & Fujishima, A. (2005). TiO2 photocatalysis: A historical overview and future prospects. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 44(12), 8269-8285. doi: 10.1143/Jjap.44.8269
  • Jeschke, P., & Nauen, R. (2008). Neonicotinoids - from zero to hero in insecticide chemistry. Pest Management Science, 64(11), 1084-1098. doi: 10.1002/ps.1631
  • Jeschke, P., Nauen, R., Schindler, M., & Elbert, A. (2011). Overview of the Status and Global Strategy for Neonicotinoids. Journal of Agricultural and Food Chemistry, 59(7), 2897-2908. doi: 10.1021/jf101303g
  • Kohler, H. R., & Triebskorn, R. (2013). Wildlife Ecotoxicology of Pesticides: Can We Track Effects to the Population Level and Beyond? science, 341(6147), 759-765. doi: 10.1126/science.1237591
  • Konstantinou, I. K., & Albanis, T. A. (2003). Photocatalytic Transformation of Pesticides in Aqueous Titanium Dioxide Suspensions Using Artificial and Solar Light: Intermediates and Degradation Pathways. Applied Catalysis B: Environmental, 42, 319-335.
  • Kovganko, N. V., & Kashkan, Z. N. (2004). Advances in the synthesis of neonicotinoids. Russian Journal of Organic Chemistry, 40(12), 1709-1726. doi: DOI 10.1007/s11178-005-0089-y
  • Le, T. D. H., Scharmuller, A., Kattwinkel, M., Kuhne, R., Schuurnann, G., & Schafer, R. B. (2017). Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicology and Environmental Safety, 145, 135-141. doi: 10.1016/j.ecoenv.2017.07.027
  • Lorret, O., Francova, D., Waldner, G., & Stelzer, N. (2009). W-doped titania nanoparticles for UV and visible-light photocatalytic reactions. Applied Catalysis B-Environmental, 91(1-2), 39-46. doi: 10.1016/j.apcatb.2009.05.005
  • Martin, M. M. B., Perez, J. A. S., Lopez, J. L. C., Oller, I., & Rodriguez, S. M. (2009). Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation. Water Research, 43(3), 653-660. doi: 10.1016/j.watres.2008.11.020
  • Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J. L., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114(19), 9919-9986. doi: 10.1021/cr5001892
  • TOB. (2018). Neonicotinoid Grubu Aktif Maddelerin Yasaklanması ve Kısıtlanması Kararı. TC Tarım ve Orman Bakanlığı, Gıda ve Kontrol Genel Müdürlügü, Karar Yazısı, Sayı :81466379-320.04.02-E.3768012, Tarih: 19.12.2018.
  • Tokumoto, J., Danjo, M., Kobayashi, Y., Kinoshita, K., Omotehara, T., Tatsumi, A., . . . Hoshi, N. (2013). Effects of Exposure to Clothianidin on the Reproductive System of Male Quails. Journal of Veterinary Medical Science, 75(6), 755-760. doi: 10.1292/jvms.12-0544
  • USEPA. (2003). Fact Sheet for Clothianidin. United States Environmental Protection Agency (7501C), Office of Prevention, Pesticides and Toxic Substances, Name of Chemical: Clothianidin, Reason for Issuance: Conditional Registration, Date Issued: May 30, 2003.
  • Whitehorn, P. R., O'Connor, S., Wackers, F. L., & Goulson, D. (2012). Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production. science, 336(6079), 351-352. doi: 10.1126/science.1215025
  • Yamamoto, A., Terao, T., Hisatomi, H., Kawasaki, H., & Arakawa, R. (2012). Evaluation of river pollution of neonicotinoids in Osaka City (Japan) by LC/MS with dopant-assisted photoionisation. Journal of Environmental Monitoring, 14(8), 2189-2194. doi: 10.1039/c2em30296a
  • Zabar, R., Dolenc, D., Jerman, T., Franko, M., & Trebse, P. (2011). Photolytic and photocatalytic degradation of 6-chloronicotinic acid. Chemosphere, 85(5), 861-868. doi: 10.1016/j.chemosphere.2011.06.107
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Güray Salihoğlu 0000-0003-0714-048X

Gizem Evrim Dilcan This is me 0000-0002-7712-7806

Mojca Kralj This is me 0000-0001-7165-4456

Polonca Trebse This is me 0000-0003-4979-1336

Publication Date August 31, 2019
Published in Issue Year 2019 Issue: 16

Cite

APA Salihoğlu, G., Dilcan, G. E., Kralj, M., Trebse, P. (2019). Fotokatalitik yöntemlerle pestisit giderimi: Clothianidin örneği. Avrupa Bilim Ve Teknoloji Dergisi(16), 855-862. https://doi.org/10.31590/ejosat.600236