Research Article
BibTex RIS Cite

Dört Mekanum Tekerli Mobil Robot Platformunun Geliştirimesi ve Güvenlik Amacıyla Kullanımı

Year 2020, Ejosat Special Issue 2020 (HORA), 416 - 425, 15.08.2020
https://doi.org/10.31590/ejosat.780670

Abstract

Günümüzde yüksek işlem gücüne sahip işlemcilerin artması ile robot çalışmaları hız kazanmıştır. Araştırma konuları arasına robotların gündelik işlerde kulanılması girmiştir. Askeri, sağlık, hizmet, eğlence sektörleri gibi birçok alandaki insan iş gücünün yerini robotların aldığı görülmektedir. Güvenlik görevlilerinin güvenliklerini sağladıkları ortamlarda suç işlenmesini önlemek, can mal emniyetini sağlamak, suç işlemeye karşı caydırıcı tedbirlerin alınması ve olaylara müdahale edilmesi için belirli periyotlarla devriye görevi yapılmaktadır. Bu durum olası bir durumda güvenlik görevlisinin zarar görmesine neden olmaktadır. Ayrıca insan gözü dar bir açıda görmektedir. İnsanın görüsü, algılaması pisikolojik ve fizyolojik etkenlere bağlıdır. Bu çalışmada güvenlik görevlilerinin sorumluluk alanı içerisinde tur atma görevini Mekanum tekerli mobil robot platformu ile yapılabileceği gösterilmektedir. Mekanum tekerlerin çok yönlü hareket kabiliyeti sayesinde robot, ortam içerisinde ve dar alanlarda rahatça hareket etmektedir. Çevrenin algılanmasında ve robotun engellere çarpmaması için LIDAR sensör kullanılmıştır. Deneysel çalışmalarda robot E şekline sahip deney ortamında 5 defa tur atmıştır. Her turu aynı noktadan başlatıp aynı noktada bitirmiştir. Kullanılan donanım ve kinematik yapının bu problem için kullanılabilir olduğu gözlemlenmiştir.

Supporting Institution

KBÜBAP

Project Number

KBÜBAP-18-YL-157

Thanks

Bu çalışma KBÜBAP-18-YL-157 kodlu BAP projesi olarak desteklenmiştir.

References

  • Alakshendra, V., & Chiddarwar, S. S. (2017). Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dynamics, 87(4), 2147–2169. https://doi.org/10.1007/s11071-016-3179-1
  • Cooney, J. A., Xu, W. L., & Bright, G. (2004). Visual dead-reckoning for motion control of a Mecanum-wheeled mobile robot. Mechatronics, 14(6), 623–637. https://doi.org/10.1016/j.mechatronics.2003.09.002
  • Dickerson, S. L., & Lapin, B. D. (1991). Control of an omni-directional robotic vehicle with Mecanum wheels. NTC ’91 - National Telesystems Conference Proceedings, 323–328. https://doi.org/10.1109/NTC.1991.148039
  • Gfrerrer, A. (2008). Geometry and kinematics of the Mecanum wheel. Computer Aided Geometric Design, 25(9), 784–791. https://doi.org/10.1016/j.cagd.2008.07.008
  • Gracia, L., & Tornero, J. (2007). Kinematic modeling of wheeled mobile robots with slip. Advanced Robotics, 21(11), 1253–1279. https://doi.org/10.1163/156855307781503763
  • He, X., Wang, A., Ghamisi, P., Li, G., & Chen, Y. (2019). LiDAR Data Classification Using Spatial Transformation and CNN. IEEE Geoscience and Remote Sensing Letters, 16(1), 125–129. https://doi.org/10.1109/LGRS.2018.2868378
  • Keek, J. S., Loh, S. L., & Chong, S. H. (2019). Comprehensive Development and Control of a Path-Trackable Mecanum-Wheeled Robot. IEEE Access, 7, 18368–18381. https://doi.org/10.1109/ACCESS.2019.2897013
  • Kim, J., Woo, S., Kim, J., Do, J., Kim, S., & Bae, S. (2012). Inertial navigation system for an automatic guided vehicle with Mecanum wheels. International Journal of Precision Engineering and Manufacturing, 13(3), 379–386. https://doi.org/10.1007/s12541-012-0048-9
  • Lin, L.-C., & Shih, H.-Y. (2013). Modeling and Adaptive Control of an Omni-Mecanum-Wheeled Robot. Intelligent Control and Automation, 04(02), 166–179. https://doi.org/10.4236/ica.2013.42021
  • Lu, X., Zhang, X., Zhang, G., Fan, J., & Jia, S. (2018). Neural network adaptive sliding mode control for omnidirectional vehicle with uncertainties. ISA Transactions, 86, 201–214. https://doi.org/10.1016/j.isatra.2018.10.043
  • Mahmut Çimen. (2018). Çok Yönlü Tekerleklere Sahip Bir Çatallı Yükleyicinin Tasarımı ve Kontrolü. Selçuk Üniversitesi.
  • Nagatani, K., Tachibana, S., Sofue, M., & Tanaka, Y. (2000). Improvement of odometry for omnidirectional vehicle using optical flow information. IEEE International Conference on Intelligent Robots and Systems, 1, 468–473.
  • Qian, J., Zi, B., Wang, D., Ma, Y., & Zhang, D. (2017). The design and development of an Omni-Directional mobile robot oriented to an intelligent manufacturing system. Sensors (Switzerland), 17(9). https://doi.org/10.3390/s17092073
  • Röhrig, C., Heß, D., Kirsch, C., & Künemund, F. (2010). Localization of an omnidirectional transport robot using IEEE 802.15.4a ranging and laser range finder. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 3798–3803. https://doi.org/10.1109/IROS.2010.5651981
  • Tlale, N., & Villiers, M. De. (2008). Kinematics and dynamics modelling of a mecanum wheeled mobile platform. 15th International Conference on Mechatronics and Machine Vision in Practice, M2VIP’08, (3), 657–662. https://doi.org/10.1109/MMVIP.2008.4749608
  • Tzafestas, S. G. (2011). Introduction to Mobile Robot Control. In Elsevier (1st ed.). Athens,Greece: Elsevier.
  • Viboonchaicheep, P., Shimada, A., & Kosaka, Y. (2003). Position Rectification Control for Mecanum Wheeled Omni-directional Vehicles. IECON Proceedings (Industrial Electronics Conference), 1, 854–859. https://doi.org/10.1109/IECON.2003.1280094
  • Vlantis, P., Bechlioulis, C. P., Karras, G., Fourlas, G., & Kyriakopoulos, K. J. (2016). Fault tolerant control for omni-directional mobile platforms with 4 mecanum wheels. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 2395–2400. https://doi.org/10.1109/ICRA.2016.7487389
  • Xie, L., Scheifele, C., Xu, W., & Stol, K. A. (2015). Heavy-duty omni-directional Mecanum-wheeled robot for autonomous navigation: System development and simulation realization. Proceedings - 2015 IEEE International Conference on Mechatronics, ICM 2015, 256–261. https://doi.org/10.1109/ICMECH.2015.7083984
  • Yan, Y., & Li, Y. (2016). Mobile Robot Autonomous Path Planning Based on Fuzzy Logic and Filter Smoothing in Dynamic Environment. 12th World Congress on Intelligent Control and Automation (WCICA), 1479–1484.
  • Zhang, L., & Li, D. (2018). Research on mobile robot target recognition and obstacle avoidance based on vision. Journal of Internet Technology, 19, 1879–1892. https://doi.org/10.3966/160792642018111906023

Four Mecanum Wheeled Mobile Robot Platform Development and Use For Security Purposes

Year 2020, Ejosat Special Issue 2020 (HORA), 416 - 425, 15.08.2020
https://doi.org/10.31590/ejosat.780670

Abstract

Robot studies are rising with the increase of processors with high processing power. The use of robots in daily work is among today's topics. For this reason, it is seen that robots replace human labor in many fields such as military, health, service and entertainment sectors. Security guards are patrolled in their provide security zone for crime prevention, deterrence, safety of life and property and hard stop. In a possible situation, the security guard could be damaged. In addition, the human eye sees at a narrow angle. Human's sensation and perception depends on psychological and physiological factors. In this study, it is shown that the mobile robot platform with Mecanum wheels can perform the task of patrol in the area like security guards. Thanks to the omni directional movement capabilities of the wheels, the robot moves comfortably in confined spaces. Robot sense the environment and obstacle with LIDAR sensor. In experimental studies, the robot patrolled 5 rounds in the experimental environment like E shape. He started each round from the same point and finished at the same point. Observed that the hardware and kinematic structure used can be used for this problem. 

Project Number

KBÜBAP-18-YL-157

References

  • Alakshendra, V., & Chiddarwar, S. S. (2017). Adaptive robust control of Mecanum-wheeled mobile robot with uncertainties. Nonlinear Dynamics, 87(4), 2147–2169. https://doi.org/10.1007/s11071-016-3179-1
  • Cooney, J. A., Xu, W. L., & Bright, G. (2004). Visual dead-reckoning for motion control of a Mecanum-wheeled mobile robot. Mechatronics, 14(6), 623–637. https://doi.org/10.1016/j.mechatronics.2003.09.002
  • Dickerson, S. L., & Lapin, B. D. (1991). Control of an omni-directional robotic vehicle with Mecanum wheels. NTC ’91 - National Telesystems Conference Proceedings, 323–328. https://doi.org/10.1109/NTC.1991.148039
  • Gfrerrer, A. (2008). Geometry and kinematics of the Mecanum wheel. Computer Aided Geometric Design, 25(9), 784–791. https://doi.org/10.1016/j.cagd.2008.07.008
  • Gracia, L., & Tornero, J. (2007). Kinematic modeling of wheeled mobile robots with slip. Advanced Robotics, 21(11), 1253–1279. https://doi.org/10.1163/156855307781503763
  • He, X., Wang, A., Ghamisi, P., Li, G., & Chen, Y. (2019). LiDAR Data Classification Using Spatial Transformation and CNN. IEEE Geoscience and Remote Sensing Letters, 16(1), 125–129. https://doi.org/10.1109/LGRS.2018.2868378
  • Keek, J. S., Loh, S. L., & Chong, S. H. (2019). Comprehensive Development and Control of a Path-Trackable Mecanum-Wheeled Robot. IEEE Access, 7, 18368–18381. https://doi.org/10.1109/ACCESS.2019.2897013
  • Kim, J., Woo, S., Kim, J., Do, J., Kim, S., & Bae, S. (2012). Inertial navigation system for an automatic guided vehicle with Mecanum wheels. International Journal of Precision Engineering and Manufacturing, 13(3), 379–386. https://doi.org/10.1007/s12541-012-0048-9
  • Lin, L.-C., & Shih, H.-Y. (2013). Modeling and Adaptive Control of an Omni-Mecanum-Wheeled Robot. Intelligent Control and Automation, 04(02), 166–179. https://doi.org/10.4236/ica.2013.42021
  • Lu, X., Zhang, X., Zhang, G., Fan, J., & Jia, S. (2018). Neural network adaptive sliding mode control for omnidirectional vehicle with uncertainties. ISA Transactions, 86, 201–214. https://doi.org/10.1016/j.isatra.2018.10.043
  • Mahmut Çimen. (2018). Çok Yönlü Tekerleklere Sahip Bir Çatallı Yükleyicinin Tasarımı ve Kontrolü. Selçuk Üniversitesi.
  • Nagatani, K., Tachibana, S., Sofue, M., & Tanaka, Y. (2000). Improvement of odometry for omnidirectional vehicle using optical flow information. IEEE International Conference on Intelligent Robots and Systems, 1, 468–473.
  • Qian, J., Zi, B., Wang, D., Ma, Y., & Zhang, D. (2017). The design and development of an Omni-Directional mobile robot oriented to an intelligent manufacturing system. Sensors (Switzerland), 17(9). https://doi.org/10.3390/s17092073
  • Röhrig, C., Heß, D., Kirsch, C., & Künemund, F. (2010). Localization of an omnidirectional transport robot using IEEE 802.15.4a ranging and laser range finder. IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 3798–3803. https://doi.org/10.1109/IROS.2010.5651981
  • Tlale, N., & Villiers, M. De. (2008). Kinematics and dynamics modelling of a mecanum wheeled mobile platform. 15th International Conference on Mechatronics and Machine Vision in Practice, M2VIP’08, (3), 657–662. https://doi.org/10.1109/MMVIP.2008.4749608
  • Tzafestas, S. G. (2011). Introduction to Mobile Robot Control. In Elsevier (1st ed.). Athens,Greece: Elsevier.
  • Viboonchaicheep, P., Shimada, A., & Kosaka, Y. (2003). Position Rectification Control for Mecanum Wheeled Omni-directional Vehicles. IECON Proceedings (Industrial Electronics Conference), 1, 854–859. https://doi.org/10.1109/IECON.2003.1280094
  • Vlantis, P., Bechlioulis, C. P., Karras, G., Fourlas, G., & Kyriakopoulos, K. J. (2016). Fault tolerant control for omni-directional mobile platforms with 4 mecanum wheels. Proceedings - IEEE International Conference on Robotics and Automation, 2016-June, 2395–2400. https://doi.org/10.1109/ICRA.2016.7487389
  • Xie, L., Scheifele, C., Xu, W., & Stol, K. A. (2015). Heavy-duty omni-directional Mecanum-wheeled robot for autonomous navigation: System development and simulation realization. Proceedings - 2015 IEEE International Conference on Mechatronics, ICM 2015, 256–261. https://doi.org/10.1109/ICMECH.2015.7083984
  • Yan, Y., & Li, Y. (2016). Mobile Robot Autonomous Path Planning Based on Fuzzy Logic and Filter Smoothing in Dynamic Environment. 12th World Congress on Intelligent Control and Automation (WCICA), 1479–1484.
  • Zhang, L., & Li, D. (2018). Research on mobile robot target recognition and obstacle avoidance based on vision. Journal of Internet Technology, 19, 1879–1892. https://doi.org/10.3966/160792642018111906023
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Musa Matlı This is me 0000-0002-8440-6950

Raif Bayır 0000-0003-3155-8771

Project Number KBÜBAP-18-YL-157
Publication Date August 15, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (HORA)

Cite

APA Matlı, M., & Bayır, R. (2020). Dört Mekanum Tekerli Mobil Robot Platformunun Geliştirimesi ve Güvenlik Amacıyla Kullanımı. Avrupa Bilim Ve Teknoloji Dergisi416-425. https://doi.org/10.31590/ejosat.780670