Research Article
BibTex RIS Cite

Determination Of Ciprofloxacin In Pharmaceutical Dosage, Human Serum and Urine, Using Molecularly Imprinted Polymer Modified Electrode By Voltammetry

Year 2020, Issue: 20, 859 - 865, 31.12.2020
https://doi.org/10.31590/ejosat.796654

Abstract

Molecularly imprinted polymer based working electrode was prepared for the determination of ciprofloxacin (CF). Electrochemical behavior of CF was investigated by differential pulse voltammetric (DPV) method in the range of 10-60% (v/v) acetonitrile (MeCN)-H2O binary mixture at the pH between 3-7 prepared Britton-Robinson (BR) buffers. Voltammetric analyzes were performed with molecularly imprinted (MIP) and non-imprinted (NIP) modified electrodes. The influence of the electropolymerization cycles, solution pH, and MeCN-H2O ratio, on the performance of both electrodes were evaluated and optimized. Detection limit was obtained as 3.34×10-5 M (S/N=3). Recommended method was successfully employed for determination of CF in pharmaceutical, human serum and urine.

References

  • Torriero, A.A.J., Ruiz-Diaz, J.J.J., Salinas, E., Marchevsky, E.J., Sanz, M.I., and Raba, J. (2006). Enzymatic rotating biosensor for ciprofloxacin determination. Talanta, 69, 691-699. https://doi.org/10.1016/j.talanta.2005.11.005
  • Shan, J., Liu, Y., Li, R., Wu, C., Zhu, L., and Zhang, J. (2015). Indirect electrochemical determination of ciprofloxacin by anodic stripping voltammetry of Cd(II) on graphene-modified electrode. Journal of Electroanalytical Chemistry, 738, 123-129. https://doi.org/10.1016/j.jelechem.2014.11.031
  • Pinachoa, D.G., Gorgy, K., Cosnier, S., Marco, M.P., and Sánchez-Baeza, F.J. (2008). Electrogeneration of polymer films functionalized by fluoroquinolone models for the development of antibiotic immunosensor. ITBM-RBM, 29 (2-3), 181-186. https://doi.org/10.1016/j.rbmret.2007.11.006
  • Piñero, M.Y., Garrido-Delgado, R., Bauza, R., Arce L., and Valcárcel, M. (2012). Easy sample treatment for the determination of enrofloxacin and ciprofloxacin residues in raw bovine milk by capillary electrophoresis. Electrophoresis, 33 (19-20), 2978-2986. https://doi.org/10.1002/elps.201200316
  • Torriero, A.A.J., Salinas, E., Raba, J., and Silber, J. J. (2006). Sensitive determination of ciprofloxacin and norfloxacin in biological fluids using an enzymatic rotating biosensor. Biosensors and Bioelectronics, 22 (1), 109-115. https://doi.org/10.1016/j.bios.2005.12.004
  • Zhang, X., Wei, Y., and Ding, Y. (2014). Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine. Analytica Chimica Acta, 835, 29-36. https://doi.org/10.1016/j.aca.2014.05.020
  • Muchohi, S.N., Thuo, N., Karisa, J., Muturi, A., Kokwaro, G.O., and Maitland, K. (2011). Determination of ciprofloxacin in human plasma using high-performance liquid chromatography coupled with fluorescence detection: Application to a population pharmacokinetics study in children with severe malnutrition. Journal of Chromatography B, 879, 146-152. https://doi.org/10.1016/j.jchromb.2010.11.032
  • Sirisha, T., Gurupadayya, B.M., and Sridhar, S. (2014). Simultaneous determination of ciprofloxacin and tinidazole in tablet dosage form by reverse phase high performance liquid chromatography. Tropical Journal of Pharmaceutical Research, 13 (6), 981-987. http://dx.doi.org/10.4314/tjpr.v13i6.23
  • Filip, C., Ceana, D.E., and Vescan, A.T. (2014). HPLC method with fluorescence detection for the identification and quantitative determination of fluoroquinolones in milk. Acta Medica Transilvanica, 2 (1), 151-153. http://www.amtsibiu.ro/component/content/article/28-nr-1-2014/1551.
  • Rodriguez, E., Moreno-Bondi, M.C., and Marazuela, M.D. (2011). Multiresidue determination of fluoroquinolone antimicrobials in baby foods by liquid chromatography. Food Chemistry, 127, 1354-1360. https://doi.org/10.1016/j.foodchem.2011.01.098
  • Espinoza-Mansilla, A., Muñoz de la Peña, A., González Gómez, D., and Salinas, F. (2005). HPLC determination of enoxacin, ciprofloxacin, norfloxacin and ofloxacin with photoinduced fluorimetric (PIF) detection and multiemission scanning application to urine and serum. Journal of Chtomatography B, 822, 185-193. https://doi.org/10.1016/j.jchromb.2005.05.045
  • Bera, A.K., De, A.K., and Pal, B. (2014). RP-HPLC method development and validation for the determination of ciprofloxacin from marketed tablet dosage forms. Journal of Chemical and Pharmaceutical Research, 6 (5), 1214-1218. www.jocpr.com
  • Vella, J., Busuttil, F., Bartolo, N.S., Sammut, C., Ferrito, V., Serracino-Inglott, A., Azzopardi, L.M., and LaFerla, G. (2015). A simple HPLC-UV method for the determination of ciprofloxacin in human plasma. Journal of Chtomatography B, 989, 80-85. https://doi.org/10.1016/j.jchromb.2015.01.006
  • Grondin, C., Zhao, W., Fakhoury, M., and Jacqz-Aigrain, E. (2011). Determination of ciprofloxacin in plasma by micro-liquid chromatography-mass spectrometry: an adapted method for neonates. Biomedical Chromatography, 25, 827-832. https://doi.org/10.1002/bmc.1523
  • Xu, X., Liu, L., Jia, Z., and Shu, Y. (2015). Determination of enrofloxacin and ciprofloxacin in foods of animal origin by capillary electrophoresis with field amplified sample stacking-sweeping technique. Food Chemistry, 176, 219-225. https://doi.org/10.1016/j.foodchem.2014.12.054
  • Varakneshin, M., and Ebrahimi, M. (2018). Preconcentration and Determination of Ciprofloxacin with Solid-phase Microextraction and Silica-coated Magnetic Nanoparticles Modified with Salicylic Acid by UV-Vis Spectrophotometry. Eurasian Journal of Analytical Chemistry, 13 (3), em21. https://doi.org/10.29333/ejac/85176
  • Hoang, V.D., and Yen, N.T. (2013). Adsorptive cathodic stripping voltammetric determination of ciprofloxacin in bulk powder, pharmaceutical dosage forms and urine. Tropical Journal of Pharmaceutical Research, 12 (5), 783-790. http://dx.doi.org/10.4314/tjpr.v12i5.19
  • Nawaz, H., Rauf, S., Akhtar, K., and Khalid, A.M. (2006). Electrochemical DNA biosensor for the study of ciprofloxacin-DNA interaction. Analytical Biochemistry, 354, 28-34. https://doi.org/10.1016/j.ab.2006.04.004
  • Kawde, A.N., Aziz, Md.A, Odewunmi, N., Hassan, N., and AlSharaa, A. (2014). Electroanalytical determination of antibacterial ciprofloxacin in pure form and in drug formulations. Arabian Journal for Science and Engineering, 39, 131-138. https://link.springer.com/article/10.1007/s13369-013-0851-3
  • Andersson, L.I. (2000). Molecular imprinting: developments and applications in the analytical chemistry field. Journal of Chtomatography B, 745, 3-13. https://doi.org/10.1016/S0378-4347(00)00135-3
  • Perçin Özkorucuklu, S., Şahin, Y., and Alsancak, G. (2008). Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors, 8, 8463-8478. https://doi.org/10.3390/s8128463
  • Mirzajani, R., and Kardani, F. (2016). Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection. Journal of Pharmaceutical and Biomedical Analysis, 122, 98–109. https://doi.org/10.1016/j.jpba.2016.01.046
  • Attallah, O.A., Al-Ghobashy, M.A., Ayoub, A.T., Tuszynski, J.A., and Nebsen, M. (2018). Computer-aided design of magnetic molecularly imprinted polymer nanoparticles for solid-phase extraction and determination of levetiracetam in human plasma. RSC Advances, 8, 14280-14292. http://dx.doi.org/10.1039/C8RA02379D
  • Sarafraz-Yazdi, A., and Razavi, N. (2015). Application of molecularly-imprinted polymers in solid-phase microextraction techniques. Trends in Analytical Chemistry, 73, 81–90. https://doi.org/10.1016/j.trac.2015.05.004
  • Lian, Z., and Wang, J. (2016). Determination of ciprofloxacin in Jiaozhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection. Marine Pollution Bulletin, 111, 411–417. https://doi.org/10.1016/j.marpolbul.2016.07.034
  • Wang, G.N., Yang, K., Liu, H.Z., Fenga, M.X, and Wang, J.P. (2016). Molecularly imprinted polymer-based solid phase extraction combined high performance liquid chromatography for determination of fluoroquinolones in milk. Analytical Methods, 27, 5511-5518. http://dx.doi.org/10.1039/C6AY00810K
  • Moreno-González, D., Hamed, A.M., Gilbert-López, B., Gámiz-Gracia, L., and García-Campaña, A.M. (2017). Evaluation of a multiresidue capillary electrophoresis-quadrupole-time-of-flight mass spectrometry method for the determination of antibiotics in milk samples. Journal of Chromatography A, 1510, 100–107. https://doi.org/10.1016/j.chroma.2017.06.055
  • Gürler, B., Perçin Özkorucuklu, S., and Kır, E. (2013). Voltammetric behavior and determination of doxycycline in pharmaceuticals at molecularly imprinted and non-imprinted overoxidized polypyrrole electrodes. Journal of Pharmaceutical and Biomedical Analysis, 84, 263–268. https://doi.org/10.1016/j.jpba.2013.06.009
  • Özcan, L., and Şahin, Y. (2007). Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sensors and Actuators B, 127, 362-369. https://doi.org/10.1016/j.snb.2007.04.034
  • Perçin Özkorucuklu, S., Özcan, L., Şahin, Y., and Alsancak, G. (2011). Electroanalytical Determination of Some Sulfonamides on Overoxidized Polypyrrole Electrodes. Australian Journal of Chemistry, 64, 965-972. https://doi.org/10.1071/CH10481
  • Özcan, L., Şahin, M., and Şahin, Y. (2008). Electrochemical preparation of a molecularly imprinted polypyrrole-modified pencil graphite electrode for determination of ascorbic acid. Sensors, 8, 5792-5805. https://doi.org/10.3390/s8095792

Farmasötik Dozaj, İnsan Serumu ve İdrarındaki Siprofloksasinin Moleküler Baskılı Polipirol Modifiye Elektrot Kullanılarak Voltametrik Tayini

Year 2020, Issue: 20, 859 - 865, 31.12.2020
https://doi.org/10.31590/ejosat.796654

Abstract

Siprofloksasin tayini için moleküler baskılanmış polimer bazlı çalışma elektrodu hazırlanmıştır. Siprofloksasinin elektrokimyasal davranışı % 10-60 (v/v) asetonitril -su ikili karışımında ve pH 3-7 aralığında hazırlanan Britton-Robinson tamponu kullanılarak diferansiyel puls voltametrisi yöntemiyle incelenmiştir. Voltametrik analizler moleküler baskılanmış (MIP) ve baskılanmamış (NIP) modifiye elektrotlar ile gerçekleştirilmiştir. Elektropolimerizasyon döngü sayısı, çözelti pH'sı ve asetonitril-su oranının her iki tip elektrodun performansı üzerindeki etkisi araştırılmış ve optimize edilmiştir. Dedeksiyon limiti 3.34×10-5 M (S/N = 3) olarak bulunmuştur. Önerilen yöntem ilaçta, insan kanı ve idrarındaki siprofloksasinin tayini için başarıyla uygulanmıştır.

References

  • Torriero, A.A.J., Ruiz-Diaz, J.J.J., Salinas, E., Marchevsky, E.J., Sanz, M.I., and Raba, J. (2006). Enzymatic rotating biosensor for ciprofloxacin determination. Talanta, 69, 691-699. https://doi.org/10.1016/j.talanta.2005.11.005
  • Shan, J., Liu, Y., Li, R., Wu, C., Zhu, L., and Zhang, J. (2015). Indirect electrochemical determination of ciprofloxacin by anodic stripping voltammetry of Cd(II) on graphene-modified electrode. Journal of Electroanalytical Chemistry, 738, 123-129. https://doi.org/10.1016/j.jelechem.2014.11.031
  • Pinachoa, D.G., Gorgy, K., Cosnier, S., Marco, M.P., and Sánchez-Baeza, F.J. (2008). Electrogeneration of polymer films functionalized by fluoroquinolone models for the development of antibiotic immunosensor. ITBM-RBM, 29 (2-3), 181-186. https://doi.org/10.1016/j.rbmret.2007.11.006
  • Piñero, M.Y., Garrido-Delgado, R., Bauza, R., Arce L., and Valcárcel, M. (2012). Easy sample treatment for the determination of enrofloxacin and ciprofloxacin residues in raw bovine milk by capillary electrophoresis. Electrophoresis, 33 (19-20), 2978-2986. https://doi.org/10.1002/elps.201200316
  • Torriero, A.A.J., Salinas, E., Raba, J., and Silber, J. J. (2006). Sensitive determination of ciprofloxacin and norfloxacin in biological fluids using an enzymatic rotating biosensor. Biosensors and Bioelectronics, 22 (1), 109-115. https://doi.org/10.1016/j.bios.2005.12.004
  • Zhang, X., Wei, Y., and Ding, Y. (2014). Electrocatalytic oxidation and voltammetric determination of ciprofloxacin employing poly(alizarin red)/graphene composite film in the presence of ascorbic acid, uric acid and dopamine. Analytica Chimica Acta, 835, 29-36. https://doi.org/10.1016/j.aca.2014.05.020
  • Muchohi, S.N., Thuo, N., Karisa, J., Muturi, A., Kokwaro, G.O., and Maitland, K. (2011). Determination of ciprofloxacin in human plasma using high-performance liquid chromatography coupled with fluorescence detection: Application to a population pharmacokinetics study in children with severe malnutrition. Journal of Chromatography B, 879, 146-152. https://doi.org/10.1016/j.jchromb.2010.11.032
  • Sirisha, T., Gurupadayya, B.M., and Sridhar, S. (2014). Simultaneous determination of ciprofloxacin and tinidazole in tablet dosage form by reverse phase high performance liquid chromatography. Tropical Journal of Pharmaceutical Research, 13 (6), 981-987. http://dx.doi.org/10.4314/tjpr.v13i6.23
  • Filip, C., Ceana, D.E., and Vescan, A.T. (2014). HPLC method with fluorescence detection for the identification and quantitative determination of fluoroquinolones in milk. Acta Medica Transilvanica, 2 (1), 151-153. http://www.amtsibiu.ro/component/content/article/28-nr-1-2014/1551.
  • Rodriguez, E., Moreno-Bondi, M.C., and Marazuela, M.D. (2011). Multiresidue determination of fluoroquinolone antimicrobials in baby foods by liquid chromatography. Food Chemistry, 127, 1354-1360. https://doi.org/10.1016/j.foodchem.2011.01.098
  • Espinoza-Mansilla, A., Muñoz de la Peña, A., González Gómez, D., and Salinas, F. (2005). HPLC determination of enoxacin, ciprofloxacin, norfloxacin and ofloxacin with photoinduced fluorimetric (PIF) detection and multiemission scanning application to urine and serum. Journal of Chtomatography B, 822, 185-193. https://doi.org/10.1016/j.jchromb.2005.05.045
  • Bera, A.K., De, A.K., and Pal, B. (2014). RP-HPLC method development and validation for the determination of ciprofloxacin from marketed tablet dosage forms. Journal of Chemical and Pharmaceutical Research, 6 (5), 1214-1218. www.jocpr.com
  • Vella, J., Busuttil, F., Bartolo, N.S., Sammut, C., Ferrito, V., Serracino-Inglott, A., Azzopardi, L.M., and LaFerla, G. (2015). A simple HPLC-UV method for the determination of ciprofloxacin in human plasma. Journal of Chtomatography B, 989, 80-85. https://doi.org/10.1016/j.jchromb.2015.01.006
  • Grondin, C., Zhao, W., Fakhoury, M., and Jacqz-Aigrain, E. (2011). Determination of ciprofloxacin in plasma by micro-liquid chromatography-mass spectrometry: an adapted method for neonates. Biomedical Chromatography, 25, 827-832. https://doi.org/10.1002/bmc.1523
  • Xu, X., Liu, L., Jia, Z., and Shu, Y. (2015). Determination of enrofloxacin and ciprofloxacin in foods of animal origin by capillary electrophoresis with field amplified sample stacking-sweeping technique. Food Chemistry, 176, 219-225. https://doi.org/10.1016/j.foodchem.2014.12.054
  • Varakneshin, M., and Ebrahimi, M. (2018). Preconcentration and Determination of Ciprofloxacin with Solid-phase Microextraction and Silica-coated Magnetic Nanoparticles Modified with Salicylic Acid by UV-Vis Spectrophotometry. Eurasian Journal of Analytical Chemistry, 13 (3), em21. https://doi.org/10.29333/ejac/85176
  • Hoang, V.D., and Yen, N.T. (2013). Adsorptive cathodic stripping voltammetric determination of ciprofloxacin in bulk powder, pharmaceutical dosage forms and urine. Tropical Journal of Pharmaceutical Research, 12 (5), 783-790. http://dx.doi.org/10.4314/tjpr.v12i5.19
  • Nawaz, H., Rauf, S., Akhtar, K., and Khalid, A.M. (2006). Electrochemical DNA biosensor for the study of ciprofloxacin-DNA interaction. Analytical Biochemistry, 354, 28-34. https://doi.org/10.1016/j.ab.2006.04.004
  • Kawde, A.N., Aziz, Md.A, Odewunmi, N., Hassan, N., and AlSharaa, A. (2014). Electroanalytical determination of antibacterial ciprofloxacin in pure form and in drug formulations. Arabian Journal for Science and Engineering, 39, 131-138. https://link.springer.com/article/10.1007/s13369-013-0851-3
  • Andersson, L.I. (2000). Molecular imprinting: developments and applications in the analytical chemistry field. Journal of Chtomatography B, 745, 3-13. https://doi.org/10.1016/S0378-4347(00)00135-3
  • Perçin Özkorucuklu, S., Şahin, Y., and Alsancak, G. (2008). Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole. Sensors, 8, 8463-8478. https://doi.org/10.3390/s8128463
  • Mirzajani, R., and Kardani, F. (2016). Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection. Journal of Pharmaceutical and Biomedical Analysis, 122, 98–109. https://doi.org/10.1016/j.jpba.2016.01.046
  • Attallah, O.A., Al-Ghobashy, M.A., Ayoub, A.T., Tuszynski, J.A., and Nebsen, M. (2018). Computer-aided design of magnetic molecularly imprinted polymer nanoparticles for solid-phase extraction and determination of levetiracetam in human plasma. RSC Advances, 8, 14280-14292. http://dx.doi.org/10.1039/C8RA02379D
  • Sarafraz-Yazdi, A., and Razavi, N. (2015). Application of molecularly-imprinted polymers in solid-phase microextraction techniques. Trends in Analytical Chemistry, 73, 81–90. https://doi.org/10.1016/j.trac.2015.05.004
  • Lian, Z., and Wang, J. (2016). Determination of ciprofloxacin in Jiaozhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection. Marine Pollution Bulletin, 111, 411–417. https://doi.org/10.1016/j.marpolbul.2016.07.034
  • Wang, G.N., Yang, K., Liu, H.Z., Fenga, M.X, and Wang, J.P. (2016). Molecularly imprinted polymer-based solid phase extraction combined high performance liquid chromatography for determination of fluoroquinolones in milk. Analytical Methods, 27, 5511-5518. http://dx.doi.org/10.1039/C6AY00810K
  • Moreno-González, D., Hamed, A.M., Gilbert-López, B., Gámiz-Gracia, L., and García-Campaña, A.M. (2017). Evaluation of a multiresidue capillary electrophoresis-quadrupole-time-of-flight mass spectrometry method for the determination of antibiotics in milk samples. Journal of Chromatography A, 1510, 100–107. https://doi.org/10.1016/j.chroma.2017.06.055
  • Gürler, B., Perçin Özkorucuklu, S., and Kır, E. (2013). Voltammetric behavior and determination of doxycycline in pharmaceuticals at molecularly imprinted and non-imprinted overoxidized polypyrrole electrodes. Journal of Pharmaceutical and Biomedical Analysis, 84, 263–268. https://doi.org/10.1016/j.jpba.2013.06.009
  • Özcan, L., and Şahin, Y. (2007). Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sensors and Actuators B, 127, 362-369. https://doi.org/10.1016/j.snb.2007.04.034
  • Perçin Özkorucuklu, S., Özcan, L., Şahin, Y., and Alsancak, G. (2011). Electroanalytical Determination of Some Sulfonamides on Overoxidized Polypyrrole Electrodes. Australian Journal of Chemistry, 64, 965-972. https://doi.org/10.1071/CH10481
  • Özcan, L., Şahin, M., and Şahin, Y. (2008). Electrochemical preparation of a molecularly imprinted polypyrrole-modified pencil graphite electrode for determination of ascorbic acid. Sensors, 8, 5792-5805. https://doi.org/10.3390/s8095792
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Berrin Gürler Akyüz 0000-0002-8711-2384

Sabriye Perçin Özkorucuklu 0000-0001-9778-2034

Esengül Kır 0000-0002-6641-3444

Gizem Yıldırım Baştemur 0000-0002-4634-4525

Publication Date December 31, 2020
Published in Issue Year 2020 Issue: 20

Cite

APA Gürler Akyüz, B., Perçin Özkorucuklu, S., Kır, E., Yıldırım Baştemur, G. (2020). Determination Of Ciprofloxacin In Pharmaceutical Dosage, Human Serum and Urine, Using Molecularly Imprinted Polymer Modified Electrode By Voltammetry. Avrupa Bilim Ve Teknoloji Dergisi(20), 859-865. https://doi.org/10.31590/ejosat.796654