Research Article
BibTex RIS Cite

Performance Analysis of a Quasi-Z-Source Inverter Circuit

Year 2020, Ejosat Special Issue 2020 (ICCEES), 13 - 20, 05.10.2020
https://doi.org/10.31590/ejosat.801852

Abstract

Today, new topology studies have been introduced for current and voltage source inverters that are widely used in power electronics applications in order to convert direct current to alternating current. In recent years, Z-source inverters (ZSIs) have become very popular by eliminating the conceptual and theoretical limitations of traditional inverters. ZSIs have the advantages like the shoot-through operation in the same phase leg of the inverter without using of DC-DC converters or transformers, the ability to operate as a buck or boost inverter depending on the applied modulation index and having a flexible-reliable circuit structure. In this study, performance analysis of a quasi Z-source inverter circuit (qZSI) under different operation conditions is comparatively examined. Among the most used control methods for the switching devices, the simple boost control technique has the largest voltage stress for a given voltage gain and the maximum boost control technique produces variable shoot-through signals resulting of low-frequency ripples on the passive components in the impedance network. Therefore constant boost control technique has been applied to the switches to generate the gate signals. The operating principle of the constant boost control technique with low voltage stress and stable shoot-through signals is explained. Boost factor, voltage gain, voltage stress and AC output voltage for different modulation indexes and DC voltage values of the qZSI are calculated with the related equations. Theoretical results have been verified with simulation studies by using Matlab/Simulink environment. According to the findings, stable shoot-through duty ratios are generated, and the qZSI circuit has been able to operate as a buck-boost converter to obtain the desired output voltage for different cases.

References

  • Anderson, J., & Peng, F. Z. (2008, June). Four quasi-Z-source inverters. In 2008 IEEE Power Electronics Specialists Conference (pp. 2743-2749). IEEE.
  • Battiston, A., Miliani, E. H., Pierfederici, S., & Meibody-Tabar, F. (2016). Efficiency improvement of a quasi-Z-source inverter-fed permanent-magnet synchronous machine-based electric vehicle. IEEE Transactions on Transportation Electrification, 2(1), 14-23.
  • Ellabban, O., & Abu-Rub, H. (2016). Z-source inverter: Topology improvements review. IEEE Industrial Electronics Magazine, 10(1), 6-24.
  • Chenchireddy, K., Jegathesan, V., & Kumar, L. A. (2020). Different Topologies of Inverter: A Literature Survey. In Innovations in Electrical and Electronics Engineering, 35-43.
  • Endiz, M. S., Serafettin, E. R. E. L., & Yagci, M. (2015). Comparative Study of Single Phase Power Inverters Based on Efficiency and Harmonic Analysis. i-Manager's Journal on Instrumentation & Control Engineering, 4(1), 1-9.
  • Endiz, M. S., & Akkaya, R. (2019). Comparative Analysis of Z-Source Inverter Control Techniques for Photovoltaic Applications. i-Manager's Journal on Power Systems Engineering, 7(2), 1-10.
  • Endiz, M. S., & Akkaya, R. (2020) Yarı Empedans Kaynaklı İnverterlerde Farklı PWM Kontrol Tekniklerinin Performans Etkisinin İncelenmesi. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2(1), 12-26.
  • Endiz, M. S., & Akkaya, R. (2020). A Modified Quasi-Z-Source Inverter with Enhanced Boost Capability. International Journal of Renewable Energy Research (IJRER), 10(2), 892-897.
  • Kabalcı, E. (2020). Review on novel single-phase grid-connected solar inverters: Circuits and control methods. Solar Energy, 198, 247-274.
  • Liu, Y., Ge, B., Ferreira, F. J., de Almeida, A. T., & Abu-Rub, H. (2011, October). Modeling and SVPWM control of quasi-Z-source inverter. In 11th International Conference on Electrical Power Quality and Utilisation (pp. 1-7). IEEE.
  • Liu, Y., Abu-Rub, H., & Ge, B. (2014). Z-Source\Quasi-Z-Source inverters: derived networks, modulations, controls, and emerging applications to photovoltaic conversion. IEEE Industrial Electronics Magazine, 8(4), 32-44.
  • Peng, F. Z. (2003). Z-Source Inverter. IEEE Transactions on Industry Applications, 39, 504-510.
  • Peng, F. Z., Shen, M., & Qian, Z. (2005). Maximum boost control of the Z-source inverter. IEEE Transactions on power electronics, 20(4), 833-838.
  • Shen, M., Wang, J., Joseph, A., Peng, F. Z., Tolbert, L. M., & Adams, D. J. (2004, October). Maximum constant boost control of the Z-source inverter. In Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting. (Vol. 1). IEEE.
  • Singh, P. K., Kushwaha, S., & Sahay, K. B. (2019). A Review of Single-Phase Grid Connected Transformerless Solar PV Inverter Topology. Journal of Electronic Design Technology, 10(1), 1-7.
  • Subhani, N., Kannan, R., Mahmud, M. A., & Romlie, M. F. (2019). Performance Analysis of a Modernized Z-Source Inverter for Robust Boost Control in Photovoltaic Power Conditioning Systems. Electronics, 8(2), 139.
  • Yu, Z., & Sajadian, S. (2020, February). Trends on Predictive Control Schemes for Impedance Source Converters. In 2020 IEEE Power and Energy Conference at Illinois (PECI) (pp. 1-6). IEEE.

Yarı Empedans Kaynaklı İnverter Devresinin Performans Analizi

Year 2020, Ejosat Special Issue 2020 (ICCEES), 13 - 20, 05.10.2020
https://doi.org/10.31590/ejosat.801852

Abstract

Doğru akımı alternatif akıma dönüştürmek amacıyla güç elektroniği uygulamalarında yaygın olarak kullanılan akım ve gerilim kaynaklı inverterler üzerine günümüzde yeni topoloji çalışmaları yapılmaktadır. Geleneksel inverterlerin sahip olduğu kavramsal ve teorik sınırlamaları ortadan kaldırması empedans kaynaklı inverterleri (ZSI) son yıllarda oldukça popüler hale getirmiştir. ZSI inverterler; DC-DC dönüştürücü veya trafo kullanım ihtiyacı olmadan aynı faz kolunda bulunan yarı iletken anahtarlama elemanlarını kısa devre olarak sürebilmesi, uygulanan modülasyon indeksine bağlı olarak düşürücü veya yükseltici modunda çalışabilmesi ile esnek ve güvenilir devre yapısına sahip olması gibi birçok avantaja sahiptir. Bu çalışmada; yarı empedans kaynaklı inverter (qZSI) devresi için farklı çalışma koşulları altında performans analizi karşılaştırmalı olarak incelenmiştir. Anahtarlama elemanlarını kontrol etmek için en çok kullanılan kontrol yöntemlerinin başında gelen basit yükseltici kontrol tekniği belirli bir kazanç elde etmek amacıyla en yüksek gerilim stresine sahip olurken, maksimum yükseltici kontrol tekniği ise değişken süreli tetikleme sinyalleri üretmesi sonucunda empedans katında kullanılan elemanlar üzerinde istenmeyen düşük frekanslı dalgalanmalar oluşturmaktadır. Bu nedenle köprü katındaki anahtarlama elemanlarını sürebilmek için sabit yükseltici kontrol tekniği seçilmiştir. Düşük gerilim stresi ve değişken olmayan kısa devre çalışma oranına sahip sabit yükseltici kontrol tekniğinin çalışma prensibi açıklanmıştır. qZSI devresinin farklı modülasyon indeksleri ve DC giriş gerilim değerlerinde yükseltme faktörü, gerilim kazancı, gerilim stresi ve AC çıkış gerilimleri, ilgili denklemler kullanılarak hesaplanmıştır. Matlab/Simulink programı kullanılarak yapılan benzetim çalışmaları ile teorik sonuçlar doğrulanmıştır. Elde edilen bulgulara göre uygulanan kontrol tekniği ile kararlı kısa devre görev süreleri üretilmiş ve qZSI dönüştürücü devresi farklı çalışma durumlarında istenilen çıkış gerilimini üretmek için düşürücü-yükseltici olarak çalışabilmiştir.

References

  • Anderson, J., & Peng, F. Z. (2008, June). Four quasi-Z-source inverters. In 2008 IEEE Power Electronics Specialists Conference (pp. 2743-2749). IEEE.
  • Battiston, A., Miliani, E. H., Pierfederici, S., & Meibody-Tabar, F. (2016). Efficiency improvement of a quasi-Z-source inverter-fed permanent-magnet synchronous machine-based electric vehicle. IEEE Transactions on Transportation Electrification, 2(1), 14-23.
  • Ellabban, O., & Abu-Rub, H. (2016). Z-source inverter: Topology improvements review. IEEE Industrial Electronics Magazine, 10(1), 6-24.
  • Chenchireddy, K., Jegathesan, V., & Kumar, L. A. (2020). Different Topologies of Inverter: A Literature Survey. In Innovations in Electrical and Electronics Engineering, 35-43.
  • Endiz, M. S., Serafettin, E. R. E. L., & Yagci, M. (2015). Comparative Study of Single Phase Power Inverters Based on Efficiency and Harmonic Analysis. i-Manager's Journal on Instrumentation & Control Engineering, 4(1), 1-9.
  • Endiz, M. S., & Akkaya, R. (2019). Comparative Analysis of Z-Source Inverter Control Techniques for Photovoltaic Applications. i-Manager's Journal on Power Systems Engineering, 7(2), 1-10.
  • Endiz, M. S., & Akkaya, R. (2020) Yarı Empedans Kaynaklı İnverterlerde Farklı PWM Kontrol Tekniklerinin Performans Etkisinin İncelenmesi. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2(1), 12-26.
  • Endiz, M. S., & Akkaya, R. (2020). A Modified Quasi-Z-Source Inverter with Enhanced Boost Capability. International Journal of Renewable Energy Research (IJRER), 10(2), 892-897.
  • Kabalcı, E. (2020). Review on novel single-phase grid-connected solar inverters: Circuits and control methods. Solar Energy, 198, 247-274.
  • Liu, Y., Ge, B., Ferreira, F. J., de Almeida, A. T., & Abu-Rub, H. (2011, October). Modeling and SVPWM control of quasi-Z-source inverter. In 11th International Conference on Electrical Power Quality and Utilisation (pp. 1-7). IEEE.
  • Liu, Y., Abu-Rub, H., & Ge, B. (2014). Z-Source\Quasi-Z-Source inverters: derived networks, modulations, controls, and emerging applications to photovoltaic conversion. IEEE Industrial Electronics Magazine, 8(4), 32-44.
  • Peng, F. Z. (2003). Z-Source Inverter. IEEE Transactions on Industry Applications, 39, 504-510.
  • Peng, F. Z., Shen, M., & Qian, Z. (2005). Maximum boost control of the Z-source inverter. IEEE Transactions on power electronics, 20(4), 833-838.
  • Shen, M., Wang, J., Joseph, A., Peng, F. Z., Tolbert, L. M., & Adams, D. J. (2004, October). Maximum constant boost control of the Z-source inverter. In Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting. (Vol. 1). IEEE.
  • Singh, P. K., Kushwaha, S., & Sahay, K. B. (2019). A Review of Single-Phase Grid Connected Transformerless Solar PV Inverter Topology. Journal of Electronic Design Technology, 10(1), 1-7.
  • Subhani, N., Kannan, R., Mahmud, M. A., & Romlie, M. F. (2019). Performance Analysis of a Modernized Z-Source Inverter for Robust Boost Control in Photovoltaic Power Conditioning Systems. Electronics, 8(2), 139.
  • Yu, Z., & Sajadian, S. (2020, February). Trends on Predictive Control Schemes for Impedance Source Converters. In 2020 IEEE Power and Energy Conference at Illinois (PECI) (pp. 1-6). IEEE.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ramazan Akkaya 0000-0002-6314-1500

Mustafa Sacid Endiz 0000-0003-3325-5109

Publication Date October 5, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ICCEES)

Cite

APA Akkaya, R., & Endiz, M. S. (2020). Yarı Empedans Kaynaklı İnverter Devresinin Performans Analizi. Avrupa Bilim Ve Teknoloji Dergisi13-20. https://doi.org/10.31590/ejosat.801852