Research Article
BibTex RIS Cite

Trapez Yutucu Plakalı Bir Havalı Güneş Kolektörünün Deneysel Tasarımı ve Sayısal Analizi

Year 2020, Ejosat Special Issue 2020 (ISMSIT), 78 - 88, 30.11.2020
https://doi.org/10.31590/ejosat.819006

Abstract

Yenilenebilir enerji, özellikle güneş enerjisi eski çağlardan bu yana gıda ve ürün kurutmada önemli rol oynamaktadır. Güneş enerjisi ile kurutmada da her geçen gün verim artırıcı yeni çözümler üretilmektedir. Bunlardan biri de havalı güneş kolektörüleri (HGK) için en iyi çalışma şartların geliştirilmesidir. Bu makalede, özellikle gıda ürünü kurutması için geliştirilen hava ısıtmalı güneş kolektörlerinin hesaplamalı akışkan dinamiği (HAD) analizi sunulmaktadır. HAD analizi ANSYS FLUENT R18.1 ile yapılmıştır. Bu analizde ANSYS FLUENT R18.1'in radyasyon hesaplama arayüzü iletişim kutusu kullanılmıştır. Bu arayüzün özelliği, bir güneş ışını izleme algoritması kullanmasıdır. Bu algoritma ile HGK üzerine düşen ve topladığı ışınımı değeri hesaplanmıştır. HAD analizi Elâzığ iklim koşullarında gerçekleştirilen bir HGK için yapılmıştır. HGK’nın modeli 800 * 1400 *150 mm düz bir plaka olmasına rağmen, güneş emici plaka kısmı trapezdir. Trapez sac güneş emiciliği yüksek (0,95) malzemelerden seçilmiştir ve trapez sacın alt kısmı iyice yalıtılmıştır. HGK’da 800*1400*4 mm ölçülerinde şeffaf düz cam kullanılmıştır. Kolektör tek geçişli, zorlanmış taşınımlı ve azimut açısına (42° Güney-Doğu) göre sabitlenmiştir. Analizlerde iş akışkanı olarak hava kullanılmıştır. HGK değişen hava debilerinde günün belirli saatlerinde (9.00-10.00-11.00 …-16.00) test edilmiş ve modellenmiştir. Sayısal modelin çözüm ağ yapısı istatistikleri verilmiştir. Analiz zamandan bağımsızdır. Sadece belirli bir saat için analiz gerçekleştirilmiştir. Her saat dilimi için ayrı analiz yapılmıştır. Deney sonuçları sayısal analizlerle karşılaştırılmıştır. Bunun sonucunda sabit HGK için günün bazı saatlerinde Elazığ iklim şartlarının güneşlenme faktörleri belirlenmiştir. HGK içerisinde gerçekleşen hava akış hareketleri ve kolektör üzerindeki sıcaklık dağılımı gösterilmiştir. Sonuç olarak sayısal analiz ile güneş kolektörünün 3 boyutlu (3B) modellemesi gerçekleştirilmiş ve HGK çıkış sıcaklığı için % 1'den az hata ile çözümlenmiştir.

Thanks

Bu çalışma Fırat Üniversitesi Bilimsel Araştırma ve Proje Koordinatörlüğü FUBAP MF: 16.54 numaralı proje tarafından desteklenmiştir. MF 16.54 numaralı proje yürütücüsü Prof. Dr. Ebru KAVAK AKPINAR'a bu çalışmaya katkılarından dolayı teşekkür ederiz.

References

  • Abuşka, Mesut; Akgül, M. B. (2014). Trapez Yutucu Plakalı Güneş Enerjili Hava Kollektörünün Isıl Veriminin Deneysel Olarak İncelenmesiDergisi, Politeknik. Politeknik Dergisi, 17(4), 177–181.
  • ALIÇ, E., & DAŞ, M. (2019). Güneş Enerjisi Destekli Kurutma Sisteminde Ürün Nem Oranının Hesaplamalı Akışkanlar Dinamiği Analizi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22(3), 78–87. https://doi.org/10.17780/ksujes.597839
  • Altuntop, N., Erdemir, D. (2013). Dünyada ve Türkiye’de Güneş Enerjisi İle İlgili Gelişmeler. Mühendis ve Makina, cilt 54(sayi 639), 69–77.
  • Asaadi, S., & Abdi, H. (2020). Numerical investigation of laminar flow and heat transfer in a channel using combined nanofluids and novel longitudinal vortex generators. Journal of Thermal Analysis and Calorimetry, 0123456789. https://doi.org/10.1007/s10973-020-09795-5
  • Daş, M. (2019). Güneş Takip Mekanizmalı Bir Kurutma Sisteminin Performans Ve Optimum Çalışma Şartlarının Belirlenmesi. Doctoral Thesis, February, 1–112.
  • Das, M., & Akpinar, E. K. (2018). Investigation of pear drying performance by different methods and regression of convective heat transfer coefficient with support vector machine. Applied Sciences (Switzerland), 8(2). https://doi.org/10.3390/app8020215
  • Daş, M., & Akpinar, E. K. (2020). Determination of thermal and drying performances of the solar air dryer with solar tracking system: Apple drying test. Case Studies in Thermal Engineering, 21(August), 100731. https://doi.org/10.1016/j.csite.2020.100731
  • Guide, A. F. U. (2011). Release 14.0, ANSYS. Inc., USA, November.
  • Gupta, A. D., & Varshney, L. (2017). Performance prediction for solar air heater having rectangular sectioned tapered rib roughness using CFD. Thermal Science and Engineering Progress, 4, 122–132. https://doi.org/10.1016/j.tsep.2017.09.005
  • Holman, J. P. (2001). Experimental methods for engineers.
  • Kaya, K., & Koç, E. (2015). Energy Resources – State of Renewable Energy. Mühendis ve Makina, 56(668), 36–47.
  • Kaya, K., Şenel, M. C., & Koç, E. (2018). Dünyada Ve Türkiye’de Yenilenebilir Enerji Kaynaklarinin Değerlendirilmesi. E-Journal of New World Sciences Academy, 13(3), 219–234. https://doi.org/10.12739/NWSA.2018.13.3.2A0152
  • Khaled, A. Y., Kabutey, A., Selvi, K. Ç., Mizera, Č., Hrabe, P., & Herák, D. (2020). Application of Computational Intelligence in Describing the Drying Kinetics of Persimmon Fruit (Diospyros kaki) During Vacuum and Hot Air Drying Process. Processes, 8(5), 544. https://doi.org/10.3390/pr8050544
  • Kumar, N., Sonawane, S. S., & Sonawane, S. H. (2018). Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. International Communications in Heat and Mass Transfer, 90(November 2017), 1–10. https://doi.org/10.1016/j.icheatmasstransfer.2017.10.001
  • Menasria, F., Zedairia, M., & Moummi, A. (2017). Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio. Energy, 133, 593–608. https://doi.org/10.1016/j.energy.2017.05.002
  • Motevali, A., Minaei, S., & Khoshtagaza, M. H. (2011). Evaluation of energy consumption in different drying methods. Energy Conversion and Management, 52(2), 1192–1199. https://doi.org/10.1016/j.enconman.2010.09.014
  • Mutabilwa, P. X., & Nwaigwe, K. N. (2020). Experimental evaluation of drying of banana using a double-pass solar collector (DPSC) and theoretical analysis using a CFD model. Cogent Engineering, 7(1). https://doi.org/10.1080/23311916.2020.1789363
  • Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for the transient and steady-state behaviour of shell-and-tube heat exchangers. Imperial College of Science and Technology, Department of Mechanical Engineering.
  • Potgieter, M. S. W., Bester, C. R., & Bhamjee, M. (2020). Experimental and CFD investigation of a hybrid solar air heater. Solar Energy, 195(August 2019), 413–428. https://doi.org/10.1016/j.solener.2019.11.058
  • Promvonge, P., & Thianpong, C. (2008). Thermal performance assessment of turbulent channel flows over different shaped ribs. International Communications in Heat and Mass Transfer, 35(10), 1327–1334. https://doi.org/10.1016/j.icheatmasstransfer.2008.07.016
  • Raj, A. K., Srinivas, M., & Jayaraj, S. (2019). CFD modeling of macro-encapsulated latent heat storage system used for solar heating applications. International Journal of Thermal Sciences, 139(April 2018), 88–104. https://doi.org/10.1016/j.ijthermalsci.2019.02.010
  • Sancar, İbrahim; Bulut, Hüsamettin; Karadağ, R., & Hilali, İ. (2019). Hibrit Tip Havalı Güneş Kollektörünün CFD Analizi. 2. Uluslararası GAP Matematik- Mühendislik-Fen Ve Sağlık Bilimleri Kongresi 21-23 Haziran 2019, Tam Metin(1), 1–14.
  • Sawhney, J. S., Maithani, R., & Chamoli, S. (2017). Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets. Applied Thermal Engineering, 117, 740–751. https://doi.org/10.1016/j.applthermaleng.2017.01.113
  • Singer, L. E., & Peterson, D. (2011). International energy outlook 2010. In International Energy Outlook and Projections (Vol. 0484, Issue May).
  • Singh, A. P., & Singh, O. P. (2018). Performance enhancement of a curved solar air heater using CFD. Solar Energy, 174(February), 556–569. https://doi.org/10.1016/j.solener.2018.09.053
  • Vasudeva Karanth, K., Manjunath, M. S., & Yagnesh Sharma, N. (2013). Three dimensional CFD analysis of solar air heater for enhancement of thermal performance using surface corrugation. International Journal of Earth Sciences and Engineering, 6(4), 851–855.
  • Yadav, A. S., & Bhagoria, J. L. (2013). A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate. Energy, 55, 1127–1142. https://doi.org/10.1016/j.energy.2013.03.066
  • Yadav, A. S., & Bhagoria, J. L. (2014). Heat transfer and fluid flow analysis of an artificially roughened solar air heater: A CFD based investigation. Frontiers in Energy, 8(2), 201–211. https://doi.org/10.1007/s11708-014-0297-7

Experimental Design and Numerical Analysis of a Trapezoidal Absorber Plate Air Solar Collector

Year 2020, Ejosat Special Issue 2020 (ISMSIT), 78 - 88, 30.11.2020
https://doi.org/10.31590/ejosat.819006

Abstract

Renewable energy, especially solar energy is an important role in drying any product ever since ancient times. With each passing day, new efficiency-increasing solutions are produced in solar drying. One of them is the development of the most suitable operating conditions for air solar collectors (SAC). This paper attempts to present a computational fluid dynamics (CFD) simulation of solar collectors developed especially, for food product drying. The CFD analysis study was conducted for a solar air collector (SAC) performed under ELAZIG weather conditions. The radiation dialog box interface of ANSYS FLUENT R18.1 was used for this study. The feature of this interface is that it uses a solar ray-tracing algorithm. With this algorithm, the value of radiation falling on HGK and collected by HGK was calculated. Although the solar collector model is a flat plate, its solar absorbing part is trapezoidal. It’s plate dimension 800 *1400*4 mm. It’s transparent glass plate dimension 800*1400*150 mm. The trapezoidal sheet was chosen from materials with high solar absorption (0.95) and its bottom surface was insulated. The collector used air as its working fluid. The collector is single pass, forced convection and fixed according to the azimuth angle (42 ° South-East). The mesh statistics of the numerical model was given. The analysis was steady state. The analysis was performed for a specific time only. A separate analysis was made for each time zone. Collector was experimental tested and modeled at varying mass flows and at different hours (9:00-10:00-11:00…-16:00) on the day. The airflow movements in the collector and the temperature distribution on the collector were shown. In numerical analysis, the 3D model of the solar collector was drawn and modeled with less than 1% error for outlet temperature. 

References

  • Abuşka, Mesut; Akgül, M. B. (2014). Trapez Yutucu Plakalı Güneş Enerjili Hava Kollektörünün Isıl Veriminin Deneysel Olarak İncelenmesiDergisi, Politeknik. Politeknik Dergisi, 17(4), 177–181.
  • ALIÇ, E., & DAŞ, M. (2019). Güneş Enerjisi Destekli Kurutma Sisteminde Ürün Nem Oranının Hesaplamalı Akışkanlar Dinamiği Analizi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22(3), 78–87. https://doi.org/10.17780/ksujes.597839
  • Altuntop, N., Erdemir, D. (2013). Dünyada ve Türkiye’de Güneş Enerjisi İle İlgili Gelişmeler. Mühendis ve Makina, cilt 54(sayi 639), 69–77.
  • Asaadi, S., & Abdi, H. (2020). Numerical investigation of laminar flow and heat transfer in a channel using combined nanofluids and novel longitudinal vortex generators. Journal of Thermal Analysis and Calorimetry, 0123456789. https://doi.org/10.1007/s10973-020-09795-5
  • Daş, M. (2019). Güneş Takip Mekanizmalı Bir Kurutma Sisteminin Performans Ve Optimum Çalışma Şartlarının Belirlenmesi. Doctoral Thesis, February, 1–112.
  • Das, M., & Akpinar, E. K. (2018). Investigation of pear drying performance by different methods and regression of convective heat transfer coefficient with support vector machine. Applied Sciences (Switzerland), 8(2). https://doi.org/10.3390/app8020215
  • Daş, M., & Akpinar, E. K. (2020). Determination of thermal and drying performances of the solar air dryer with solar tracking system: Apple drying test. Case Studies in Thermal Engineering, 21(August), 100731. https://doi.org/10.1016/j.csite.2020.100731
  • Guide, A. F. U. (2011). Release 14.0, ANSYS. Inc., USA, November.
  • Gupta, A. D., & Varshney, L. (2017). Performance prediction for solar air heater having rectangular sectioned tapered rib roughness using CFD. Thermal Science and Engineering Progress, 4, 122–132. https://doi.org/10.1016/j.tsep.2017.09.005
  • Holman, J. P. (2001). Experimental methods for engineers.
  • Kaya, K., & Koç, E. (2015). Energy Resources – State of Renewable Energy. Mühendis ve Makina, 56(668), 36–47.
  • Kaya, K., Şenel, M. C., & Koç, E. (2018). Dünyada Ve Türkiye’de Yenilenebilir Enerji Kaynaklarinin Değerlendirilmesi. E-Journal of New World Sciences Academy, 13(3), 219–234. https://doi.org/10.12739/NWSA.2018.13.3.2A0152
  • Khaled, A. Y., Kabutey, A., Selvi, K. Ç., Mizera, Č., Hrabe, P., & Herák, D. (2020). Application of Computational Intelligence in Describing the Drying Kinetics of Persimmon Fruit (Diospyros kaki) During Vacuum and Hot Air Drying Process. Processes, 8(5), 544. https://doi.org/10.3390/pr8050544
  • Kumar, N., Sonawane, S. S., & Sonawane, S. H. (2018). Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. International Communications in Heat and Mass Transfer, 90(November 2017), 1–10. https://doi.org/10.1016/j.icheatmasstransfer.2017.10.001
  • Menasria, F., Zedairia, M., & Moummi, A. (2017). Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio. Energy, 133, 593–608. https://doi.org/10.1016/j.energy.2017.05.002
  • Motevali, A., Minaei, S., & Khoshtagaza, M. H. (2011). Evaluation of energy consumption in different drying methods. Energy Conversion and Management, 52(2), 1192–1199. https://doi.org/10.1016/j.enconman.2010.09.014
  • Mutabilwa, P. X., & Nwaigwe, K. N. (2020). Experimental evaluation of drying of banana using a double-pass solar collector (DPSC) and theoretical analysis using a CFD model. Cogent Engineering, 7(1). https://doi.org/10.1080/23311916.2020.1789363
  • Patankar, S. V., & Spalding, D. B. (1972). A calculation procedure for the transient and steady-state behaviour of shell-and-tube heat exchangers. Imperial College of Science and Technology, Department of Mechanical Engineering.
  • Potgieter, M. S. W., Bester, C. R., & Bhamjee, M. (2020). Experimental and CFD investigation of a hybrid solar air heater. Solar Energy, 195(August 2019), 413–428. https://doi.org/10.1016/j.solener.2019.11.058
  • Promvonge, P., & Thianpong, C. (2008). Thermal performance assessment of turbulent channel flows over different shaped ribs. International Communications in Heat and Mass Transfer, 35(10), 1327–1334. https://doi.org/10.1016/j.icheatmasstransfer.2008.07.016
  • Raj, A. K., Srinivas, M., & Jayaraj, S. (2019). CFD modeling of macro-encapsulated latent heat storage system used for solar heating applications. International Journal of Thermal Sciences, 139(April 2018), 88–104. https://doi.org/10.1016/j.ijthermalsci.2019.02.010
  • Sancar, İbrahim; Bulut, Hüsamettin; Karadağ, R., & Hilali, İ. (2019). Hibrit Tip Havalı Güneş Kollektörünün CFD Analizi. 2. Uluslararası GAP Matematik- Mühendislik-Fen Ve Sağlık Bilimleri Kongresi 21-23 Haziran 2019, Tam Metin(1), 1–14.
  • Sawhney, J. S., Maithani, R., & Chamoli, S. (2017). Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets. Applied Thermal Engineering, 117, 740–751. https://doi.org/10.1016/j.applthermaleng.2017.01.113
  • Singer, L. E., & Peterson, D. (2011). International energy outlook 2010. In International Energy Outlook and Projections (Vol. 0484, Issue May).
  • Singh, A. P., & Singh, O. P. (2018). Performance enhancement of a curved solar air heater using CFD. Solar Energy, 174(February), 556–569. https://doi.org/10.1016/j.solener.2018.09.053
  • Vasudeva Karanth, K., Manjunath, M. S., & Yagnesh Sharma, N. (2013). Three dimensional CFD analysis of solar air heater for enhancement of thermal performance using surface corrugation. International Journal of Earth Sciences and Engineering, 6(4), 851–855.
  • Yadav, A. S., & Bhagoria, J. L. (2013). A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate. Energy, 55, 1127–1142. https://doi.org/10.1016/j.energy.2013.03.066
  • Yadav, A. S., & Bhagoria, J. L. (2014). Heat transfer and fluid flow analysis of an artificially roughened solar air heater: A CFD based investigation. Frontiers in Energy, 8(2), 201–211. https://doi.org/10.1007/s11708-014-0297-7
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Erdem Alıç 0000-0002-2852-0353

Mehmet Daş 0000-0002-4143-9226

Publication Date November 30, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ISMSIT)

Cite

APA Alıç, E., & Daş, M. (2020). Trapez Yutucu Plakalı Bir Havalı Güneş Kolektörünün Deneysel Tasarımı ve Sayısal Analizi. Avrupa Bilim Ve Teknoloji Dergisi78-88. https://doi.org/10.31590/ejosat.819006