Research Article
BibTex RIS Cite

The Effect of Acid Leaching on the Recovery of Silver from the Waste Dams of Eti Silver Mining Companies

Year 2021, Issue: 21, 1 - 16, 31.01.2021
https://doi.org/10.31590/ejosat.778840

Abstract

Recently, the silver is traditionally produced with cyanide method. The silver ore taken into production process is sent to solid waste dams after the cyanide leaching. It is known that the silver grade of these wastes is quite high. In this study, it is aimed to increase the silver recovery efficiency from high grade silver in waste dams by making acid leaching. Blended samples taken from the silver ore waste dams belonging to Eti Silver Mining Company (Kütahya) were ground in a crusher, grain size analysis was performed and then sulfuric acid leaching process has been found suitable with the preliminary experiments and pre-activation leaching with different concentrations of sulfuric acid (H2SO4) at 25 °C and 100 °C were applied. Since sodium cyanide (NaCN) will be used in the next stage after this pre-activation process, the pH of the prepared leach solution has been adjusted to the range of 10.50-12.00 range with lime and then NaCN leaching has been carry out. Silver analysis was performed with atomic absorption spectrometry (AAS) at the end of the leaching process and the recovery percent of silver from wastes was calculated. In addition, in order to see the effect of H2SO4 pre-activation process in removing other metals in the samples, metal analyzes were performed with inductively coupled plasma-optic emission spectrometry (ICP-OES) from the solids of the samples in the raw form and then dried samples after leaching with H2SO4 and NaCN. From the results of the analysis, it has been determined that H2SO4 significantly removed the metal pollution. As the concentration of H2SO4 increased, the samples that were removed away from metal impurities showed higher silver recovery yields. As a result of cyanide leaching, it was seen that the yield of silver recovery was increased from 17.6% to 31.7%. It was concluded that increasing the temperature in H2SO4 leaching had no effect on the recovery efficiency and this increase was related to the increase only in the amount of H2SO4.

References

  • Ali, J., Wang, L., Waseem, H., Sharif, H.M.A., Djellabi, R., Zhang, C., Pan G., (2019). Bioelectrochemical recovery of silver from wastewater with sustainable power generation and its reuse for biofouling mitigation, Journal of Cleaner Production, 235, 1425-1437.
  • Butterman, W.C., Hilliard, H.E. (2005). Mineral commodity profiles: Silver. Reston, USA.
  • Castro, L., Blázquez, L., González, F., Muñoz, J.Á., Ballester, A. (2015). Exploring the possibilities of biological fabrication of gold nanostructures using orangepeel extract. Metals, 5, 1609–1619.
  • Celep, O., Yazici, E.Y, Altinkaya, P., Deveci, H. (2019). Characterization of a refractory arsenical silver ore by mineral liberation analysis (MLA) and diagnostic leaching. Hydrometallurgy, 189, 105106.
  • Chuang, C.H., Tsai, C.H., Lin, Y.C., Lin, H.J. (2016). Effects of current stressing on the grain structure and mechanical properties of Ag-Alloy bonding wires with various Pd and Au contents. Metals, 6, 182–195.
  • Dao Ho, N.A., Babel, S., (2020). Bioelectrochemical technology for recovery of silver from contaminated aqueous solution: a review, Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-020-10065-y.
  • Das, B., Saikia, P., Sharma, M., Baruah, M.J., Subhasish Roy, S., Kusum K. Bania, K.K., (2020),Direct cyanidation of silver sulfide by heterolytic C–CN bond cleavage of acetonitrile, RSC Advances, 10, 8314.
  • Freitas, E.D., Almeida, H.J., de Almeida Neto, A.F., Vieira, M.G.A. (2018). Continuous adsorption of silver and copper by Verde-lodo bentonite in a fixed bed flow-through column. Journal of Cleaner Production. 171, 613–621. https://doi.org/10.1016/j.jclepro.2017.10.036.
  • Freitas, G.R., Vieira M.G.A., da Silva M.G.C. (2019). Fixed bed biosorption of silver and investigation of functional groups on acidified biosorbent from algae biomass. Environmental Science and Pollution Research, 26, 36354–36366. https://doi.org/10.1007/s11356-019-06731-5.
  • Gabriela, V. M. F., Torres, J. R. P., Jesús, L. V. G., Guillermo, C. T. M., Gregorio, G. Z., (2012). Kinetic aspects of gold and silver recovery in cementation with zinc power and electrocoagulation iron process, Advances in Chemical Engineering and Science, 2, 342-349.
  • Huerta‑Rosas, B., Cano‑Rodriguez, I., Gamino‑Arroyo, Z.,·Gomez‑Castro, F.I., Carrillo‑Pedroza, F.R., Romo‑Rodriguez, Gutierrez‑Corona, P.J.F., (2020). Aerobic processes for bioleaching manganese and silver using microorganisms indigenous to mine tailings, World Journal of Microbiology and Biotechnology, 36, 124, https://doi.org/10.1007/s11274-020-02902-6.
  • İbrahim, A., Celep, O., Paktunç, D., Thibault., Y. (2014). Influence of potassium hydroxide pretreatment on the extraction of gold and silver from a refractory ore. Hydrometallurgy, 146, 64–71.
  • Li, H., Zhang, L., Koppala, S., Ma, A., Penga, J., Lia, S., Yina, S., (2018). Extraction of gold and silver in the selective chlorination roasting process of cyanidation tailing, Separation Science and Technology, 53(3), 458–466. https://doi.org/10.1080/01496395.2017.1388258.
  • Qin, H., Guo, X., Tian, Q., Zhang, L., (2020). Pyrite enhanced chlorination roasting and its efficacy in gold and silver recovery from gold tailing, Separation and Purification Technology, 250, 117168.
  • Quinet, P., Proost, J., Lierde, A.V. (2005). Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Minerals and Metallurgical Processing, 22, 17–22.
  • Tao, H.C., Gao, Z.Y., Ding, H. (2012). Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresource Technology, 111, 92–97.
  • Yang, E.H., Lee, J.K., Lee, J.S. (2017). Environmentally friendly recovery of Ag from end-of-life C-Si solar cell using organic acid and its electrochemical purification. Hydrometallurgy, 167, 129–133.
  • Yaman, S. (2019). Eti Gümüş Maden İşletmeleri Atık Barajlarındaki Gümüşün geri Kazanımı. Kütahya Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 46 s.
  • Wang, J., Lu, X.L., Fan, S.H., Zhao, W.Q., Li, W.K. (2015). In situ growth of gold nanoparticles on SiO2/lanthanide–polyoxometalates composite spheres: Anefficient catalytic and luminescent system. Journal ofAlloys and Compounds, 632, 87–93.
  • Zhang, K., Liu, Z., Qiu, X., Rao, S., Zhu, W. 2020. Hydrometallurgical recovery of manganese, gold and silver from refractory Au-Ag ore by two-stage reductive acid and cyanidation leaching, Hydrometallurgy, 196 (2020) 105406.

Eti Gümüş Maden İşletmeleri Atık Barajlarındaki Gümüşün Geri Kazanımına Asit Liçinin Etkisi

Year 2021, Issue: 21, 1 - 16, 31.01.2021
https://doi.org/10.31590/ejosat.778840

Abstract

Günümüzde gümüş üretimi geleneksel olarak siyanür yöntemi kullanılarak gerçekleştirilmektedir. Üretime alınan gümüş cevheri, siyanür liçinden sonra katı atık barajlarına gönderilmektedir. Barajlardaki bu atıkların gümüş tenörünün oldukça yüksek olduğu bilinmektedir. Bu çalışmada, atık barajlarındaki yüksek tenörlü gümüşün geri kazanılmasında asit liçi yapılarak verimin arttırılması hedeflenmiştir. Eti Gümüş Maden İşletmeleri’ne (Kütahya) ait gümüş cevheri atık barajlarından temsili olarak alınan harmanlanmış numuneler çeneli kırıcıda öğütülmüş, tane boyutu analizi yapılmış ve ardından yapılan ön denemelerle sülfirik asit liçi uygun görülmüş ve farklı konsantrasyonlardaki sülfirik asit (H2SO4) çözeltileri ile 25 °C ve 100 °C’de ön aktivasyon liçine tabi tutulmuştur. Bu ön aktivasyon işleminden sonraki aşamada sodyum siyanür (NaCN) kullanılacağı için hazırlanan liçin pH’ı kireç ile 10,50-12,00 aralığına ayarlanmış ve daha sonra NaCN liçi uygulanmıştır. NaCN liçi sonrası atomik absorpsiyon spektrometresi (AAS) ile gümüş tayini yapılarak, atıklardan gümüşün % geri kazanım miktarları hesaplanmıştır. Ayrıca H2SO4 ön aktivasyon işleminin, numunelerdeki diğer metalleri uzaklaştırma etkisini görmek için numunelerin önce ham halde daha sonra H2SO4 ve NaCN liçi sonrası kurutulan katılarından indüktif eşleşmiş plazma-optik emisyon spektrometresi (ICP-OES) ile metal tayinleri yapılmıştır. Analiz sonuçlarından H2SO4’in metal kirliliğini büyük oranda uzaklaştırdığı tespit edilmiştir. H2SO4 çözeltilerinin konsantrasyonu arttıkça metal kirliliklerinden uzaklaşan numunelerin, siyanür liçi sonucunda gümüş kazanım veriminde de %17,6’dan %31,7’ye artış sağlandığı görülmüştür. H2SO4 liçinde sıcaklığın artırılmasının geri kazanım verimine etkisi olmadığı, bu artışın sadece H2SO4 miktarındaki artış ile orantılı olduğu sonucuna varılmıştır.

References

  • Ali, J., Wang, L., Waseem, H., Sharif, H.M.A., Djellabi, R., Zhang, C., Pan G., (2019). Bioelectrochemical recovery of silver from wastewater with sustainable power generation and its reuse for biofouling mitigation, Journal of Cleaner Production, 235, 1425-1437.
  • Butterman, W.C., Hilliard, H.E. (2005). Mineral commodity profiles: Silver. Reston, USA.
  • Castro, L., Blázquez, L., González, F., Muñoz, J.Á., Ballester, A. (2015). Exploring the possibilities of biological fabrication of gold nanostructures using orangepeel extract. Metals, 5, 1609–1619.
  • Celep, O., Yazici, E.Y, Altinkaya, P., Deveci, H. (2019). Characterization of a refractory arsenical silver ore by mineral liberation analysis (MLA) and diagnostic leaching. Hydrometallurgy, 189, 105106.
  • Chuang, C.H., Tsai, C.H., Lin, Y.C., Lin, H.J. (2016). Effects of current stressing on the grain structure and mechanical properties of Ag-Alloy bonding wires with various Pd and Au contents. Metals, 6, 182–195.
  • Dao Ho, N.A., Babel, S., (2020). Bioelectrochemical technology for recovery of silver from contaminated aqueous solution: a review, Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-020-10065-y.
  • Das, B., Saikia, P., Sharma, M., Baruah, M.J., Subhasish Roy, S., Kusum K. Bania, K.K., (2020),Direct cyanidation of silver sulfide by heterolytic C–CN bond cleavage of acetonitrile, RSC Advances, 10, 8314.
  • Freitas, E.D., Almeida, H.J., de Almeida Neto, A.F., Vieira, M.G.A. (2018). Continuous adsorption of silver and copper by Verde-lodo bentonite in a fixed bed flow-through column. Journal of Cleaner Production. 171, 613–621. https://doi.org/10.1016/j.jclepro.2017.10.036.
  • Freitas, G.R., Vieira M.G.A., da Silva M.G.C. (2019). Fixed bed biosorption of silver and investigation of functional groups on acidified biosorbent from algae biomass. Environmental Science and Pollution Research, 26, 36354–36366. https://doi.org/10.1007/s11356-019-06731-5.
  • Gabriela, V. M. F., Torres, J. R. P., Jesús, L. V. G., Guillermo, C. T. M., Gregorio, G. Z., (2012). Kinetic aspects of gold and silver recovery in cementation with zinc power and electrocoagulation iron process, Advances in Chemical Engineering and Science, 2, 342-349.
  • Huerta‑Rosas, B., Cano‑Rodriguez, I., Gamino‑Arroyo, Z.,·Gomez‑Castro, F.I., Carrillo‑Pedroza, F.R., Romo‑Rodriguez, Gutierrez‑Corona, P.J.F., (2020). Aerobic processes for bioleaching manganese and silver using microorganisms indigenous to mine tailings, World Journal of Microbiology and Biotechnology, 36, 124, https://doi.org/10.1007/s11274-020-02902-6.
  • İbrahim, A., Celep, O., Paktunç, D., Thibault., Y. (2014). Influence of potassium hydroxide pretreatment on the extraction of gold and silver from a refractory ore. Hydrometallurgy, 146, 64–71.
  • Li, H., Zhang, L., Koppala, S., Ma, A., Penga, J., Lia, S., Yina, S., (2018). Extraction of gold and silver in the selective chlorination roasting process of cyanidation tailing, Separation Science and Technology, 53(3), 458–466. https://doi.org/10.1080/01496395.2017.1388258.
  • Qin, H., Guo, X., Tian, Q., Zhang, L., (2020). Pyrite enhanced chlorination roasting and its efficacy in gold and silver recovery from gold tailing, Separation and Purification Technology, 250, 117168.
  • Quinet, P., Proost, J., Lierde, A.V. (2005). Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Minerals and Metallurgical Processing, 22, 17–22.
  • Tao, H.C., Gao, Z.Y., Ding, H. (2012). Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresource Technology, 111, 92–97.
  • Yang, E.H., Lee, J.K., Lee, J.S. (2017). Environmentally friendly recovery of Ag from end-of-life C-Si solar cell using organic acid and its electrochemical purification. Hydrometallurgy, 167, 129–133.
  • Yaman, S. (2019). Eti Gümüş Maden İşletmeleri Atık Barajlarındaki Gümüşün geri Kazanımı. Kütahya Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 46 s.
  • Wang, J., Lu, X.L., Fan, S.H., Zhao, W.Q., Li, W.K. (2015). In situ growth of gold nanoparticles on SiO2/lanthanide–polyoxometalates composite spheres: Anefficient catalytic and luminescent system. Journal ofAlloys and Compounds, 632, 87–93.
  • Zhang, K., Liu, Z., Qiu, X., Rao, S., Zhu, W. 2020. Hydrometallurgical recovery of manganese, gold and silver from refractory Au-Ag ore by two-stage reductive acid and cyanidation leaching, Hydrometallurgy, 196 (2020) 105406.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Rukiye Saygılı Canlıdinç 0000-0002-3942-3196

Selçuk Yaman This is me 0000-0002-5309-5264

Ferda Özmal 0000-0002-8393-5279

Yunus Erdoğan This is me 0000-0002-0383-0793

Publication Date January 31, 2021
Published in Issue Year 2021 Issue: 21

Cite

APA Saygılı Canlıdinç, R., Yaman, S., Özmal, F., Erdoğan, Y. (2021). Eti Gümüş Maden İşletmeleri Atık Barajlarındaki Gümüşün Geri Kazanımına Asit Liçinin Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(21), 1-16. https://doi.org/10.31590/ejosat.778840