Review
BibTex RIS Cite

Design Factors for Anaerobic Fermenter in Biogas Production From Agricultural Wastes

Year 2021, Issue: 21, 181 - 190, 31.01.2021
https://doi.org/10.31590/ejosat.784599

Abstract

For biogas production, in order to improve and speed up the process of determining the material to be used, fermenter designs suitable for various common features of these materials are required. The biggest problem in the use of agricultural biomass in the anaerobic fermentation process is that the material sizes and compositions are variable due to the different production systems. Fermenter design is an important factor affecting methane yield and anaerobic fermentation process. Effective factors in fermenter design can be examined in two basic groups, mainly the properties of the raw material to be used and operating variables. Commercial-scale anaerobic fermenters are generally operated below the appropriate loading rates (OLR) due to insufficient monitoring and control systems. This can lead to instability in the fermentation process by creating inhibitory compounds such as highly volatile fatty acids (VFAs) that affect methanogens. The rate of failure has reached high levels in plug flow and continuously stirred type fermenters. It is important to use automatic measurement and control systems to maintain suitable working conditions for fermenters. In this study, biological, technical, economical and environmental factors have been evaluated for fermenter design.

References

  • Abbasi, T, Tauseef, S, Abbasi, SA. (2011). Biogas Energy. In: Springer Briefs in Environmental Science. New York: Springer Science and Business Media.
  • Burton, FL, Stensel, HD. (2014). Wastewater Engineering: Treatment and Resource Recovery. 5th ed. New York: McGraw-Hill.
  • Dareioti, MA, Kornaros, M. (2014). Effect of Hydraulic Retention Time (HRT) on the Anaerobic Co-Digestion of Agro-industrial Wastes in a Two-Stage CSTR System. Bioresour. Technol., 167, 407-415.
  • Deublein, D, Steinhauser, A. (2011). Biogas from Waste and Renewable Resources: An Introduction. Germany: Wiley-Interscience; 2011.
  • Duan, N, Dong, B, Wu, B, Dai, X. (2012). High-solid Anaerobic Digestion Of Sewage Sludge Under Mesophilic Conditions: Feasibility Study. Bioresour. Technol.,104, 150-156.
  • Eryılmaz, T, Yeşi̇lyurt, M, Gökdoğan, O, Yumak, B. (2015). Determination of Biogas Potential from Animal Waste in Turkey: A Case Study for Yozgat Province. Avrupa Bilim ve Teknoloji Dergisi, 2 (4), 106-111. Retrieved from https://dergipark.org.tr/tr/pub/ejosat/issue/45158/565086.
  • Kanat, G , Erguven, G. (2020). Importance of Solid Waste Management on Composting, Problems and Proposed Solutions: The Case of Turkey. Avrupa Bilim ve Teknoloji Dergisi , (19) , 66-71. DOI: 10.31590/ejosat.672413.
  • Kayhanian, M, Tchobanoglous, G, Brown, RC. (2007). Biomass Conversion Processes For Energy Recovery. In: Kreith, F., Goswami, DY, eds. Handbook of energy efficiency and renewable energy. Florida: CRC Pres, p. 22.1-22.67.
  • Kim, M, Gomec, CY, Ahn, Y, Speece, R. (2003). Hydrolysis and Acidogenesis of Particulate Organic Material in Mesophilic and Thermophilic Anaerobic Digestion. Environ. Technol. 2003;24: 1183-1190.
  • Kocabey, S. (2019). Balıkesir İli İçin Hayvansal Atık Kaynaklı Biyogaz Potansiyelinin Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi , (17), 234-243. DOI: 10.31590/ejosat.619058.
  • Komemoto, K, Lim, YG, Nagao, N, Onoue, Y, Niwa, C, Toda, T. (2009). Effect of Temperature on VFA’s and Biogas Production in Anaerobic Solubilization of Food Waste. Waste Manage., 29, 2950-2955.
  • Kozuchowska, J, Evison, LM. (1995). VFA Production in Pre-acidification Systems without pH Control. Environ. Technol., 16, 667-675.
  • Li, W, Guo, J, Cheng, H, Wang, W, Dong, R. (2017). Two-phase Anaerobic Digestion of Municipal Solid Wastes Enhanced by Hydrothermal Pretreatment: Viability, Performance and Microbial Community Evaluation. Appl. Energy, 189, 613-622. Lindner, J, Zielonka, S, Oechsner, H, Lemmer, A. (2015). Effect of Different Ph-Values on Process Parameters in Two-Phase Anaerobic Digestion of High-Solid Substrates. Environ. Technol., 36, 198-207
  • Lissens, G, Vandevivere, P, De Baere, L, Biey, E, Verstraete, W. (2001). Solid Waste Digestors: Process Performance and Practice for Municipal Solid Waste Digestion. Water Sci. Technol., 44, 91-102.
  • Moestedt, J, Nordell, E, Hallin, S, Schnürer, A. (2016). Two-Stage Anaerobic Digestion for Reduced Hydrogen Sulphide Production. J. Chem. Technol. Biotechnol., 91, 1055-1062.
  • Nakakubo, R, Møller, HB, Nielsen, AM, Matsuda, J. (2008). Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environ. Eng. Sci., 25, 1487-1496.
  • Nayono, SE. 2010 Anaerobic Digestion of Organic Solid Waste for Energy Production [dissertation]. Germany: Karlsruhe Institute of Technology.
  • Paudel, S, Kang, Y, Yoo, YS, Seo, GT. (2017). Effect of Volumetric Organic Loading Rate (OLR) on H2 and CH4 Production by Two-Stage Anaerobic Co-Digestion of Food Waste And Brown Water. Waste Manage., 61:484-493.
  • Pavan, P, Battistoni, P, Cecchi, F, Mata-Alvarez, J. (2000) Two-Phase Anaerobic Digestion of Source Sorted OFMSW (Organic Fraction Of Municipal Solid Waste): Performance and Kinetic Study. Water Sci. Technol., 41, 111-118.
  • Ramos-Suárez, J, Arroyo, NC, González-Fernández, C. (2015). The Role of Anaerobic Digestion in Algal Biorefineries: Clean Energy Production, Organic Waste Treatment, and Nutrient Loop Closure. In: Singh B, Kuldeep B, Faizal B, eds. Algae and environmental sustainability. India: Springer; p. 53-76.
  • Rapport, J, Zhang, R, Jenkins, BM, Williams, RB. (2008). Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste. In: California Environmental Protection Agency. California: California Integrated Waste Management Board.
  • Rincón, B, Borja, R, González, JM, Portillo, MC, Sáiz-Jiménez, C. (2008). Influence of Organic Loading Rate and Hydraulic Retention Time on the Performance, Stability and Microbial Communities of One-Stage Anaerobic Digestion of Two-Phase Olive Mill Solid Residue. Biochem. Energ. J., 40, 253-261.
  • Roos, K, Martin, J, Moser, M. (2004). AgSTAR handbook: A Manual for Developing Biogas Systems at Commercial Farms in the United States. US EPA.
  • Rosgaard, L, Andric, P, Dam-Johansen, K, Pedersen, S, Meyer, AS. (2007). Effects of Substrate Loading on Enzymatic Hydrolysis and Viscosity of Pretreated Barley Straw. Appl. Biochem. Biotechnol., 143, 27-40.
  • Stewart, WC. (2014). Three Stage, Multiple Phase Anaerobic Digestion System and Method [Internet]. Google Patents.
  • Tchobanoglous, G, Burton, FL, Stensel, HD. (2003). Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill Education.
  • Turker, G. (2020). Organik Atıklardan Biyogaz Üretimi, Lambert Academic Publishing
  • Turovskiy, IS, Mathai, P. (2006). Wastewater Sludge Processing. New Jersey: Wiley-Interscience.
  • Uemura, S. (2010). Mineral Requirements for Mesophilic and Thermophilic Anaerobic Digestion of Organic Solid Waste. Int. J. Environ. Res., 4, 33-40.
  • Yen, HW, Brune, DE. (2007). Anaerobic Co-Digestion of Algal Sludge And Waste Paper to Produce Methane. Bioresour. Technol., 98,130-134.
  • Yu, HQ, Fang, HHP. (2002). Acidogenesis of Dairy Wastewater at Various pH Levels. Water Sci. Technol., 45, 201-206.
  • Yu, L, Ma, J, Frear, C, Zaher, U, Chen, S. (2013). Two-Stage Anaerobic Digestion Systems Wherein One of the Stages Comprises A Two-Phase System. Google patents.
  • Zenk, H. (2019). Samsun İlinin Hayvan Gübrelerinden Üretilebilecek Elektrik Enerji Potansiyeli. Avrupa Bilim ve Teknoloji Dergisi , (17) , 1307-1312 . DOI: 10.31590/ejosat.661910
  • Zhang, J., Loh, K-C., Li, W., Lim, JW., Dai, Y., Tong, YW. 2016. Three-Stage Anaerobic Digester for Food Waste. Appl. Energ., 194, 287-295.
  • Zhang, J, Sun, K, Wu, M, Zhang, L. (2006). Influence of Temperature on Performance of Anaerobic Digestion of Municipal Solid Waste. J. Environ. Sci., 18, 810-815.

Tarımsal Atıklardan Biyogaz Üretimi İçin Anaerobik Fermentör Tasarımında Etkili Etmenler

Year 2021, Issue: 21, 181 - 190, 31.01.2021
https://doi.org/10.31590/ejosat.784599

Abstract

Biyogaz üretmek amacıyla, kullanılacak materyalin belirlenmesi süreçlerini iyileştirmek ve hızlandırmak için, bu materyallerin çeşitli ortak özelliklerine uygun fermentör tasarımları gereklidir. Anaerobik fermentasyon işleminde tarımsal biyokütle kullanımındaki en büyük sorun, üretim sistemlerinin farklı olması nedeniyle, materyal boyutları ve bileşimlerinin değişken olmasıdır. Fermentör tasarımı, metan verimini ve anaerobik fermentasyon sürecini etkileyen önemli bir etmendir. Fermentör tasarımında etkili etmenler esas olarak, kullanılacak hammaddenin özellikleri ve işletme değişkenleri olmak üzere iki temel grupta incelenebilir. Ticari ölçekli anaerobik fermentörler, izleme ve kontrol sistemlerinin yetersiz olması nedeniyle, genellikle uygun yükleme oranlarının (OLR) altında çalıştırılmaktadır. Bu durum, metanojenleri etkileyen yüksek oranda uçucu yağ asitleri (VFA) gibi, inhibitör bileşikler oluşturarak, fermentasyon sürecinde kararsızlığa neden olabilir. Fermentörlerin arızalanma oranı, düzensiz akışlı ve sürekli karıştırılan tip fermentörlerde yüksek düzeylere ulaşmıştır. Fermentörler için uygun çalışma koşullarının sürdürülebilmesi için, otomatik ölçme ve kontrol sistemlerinin kullanılması önemlidir. Bu çalışmada, anaerobik fermentör tasarımında etkili; biyolojik, teknik, ekonomik ve çevresel ölçütler değerlendirilmiştir

References

  • Abbasi, T, Tauseef, S, Abbasi, SA. (2011). Biogas Energy. In: Springer Briefs in Environmental Science. New York: Springer Science and Business Media.
  • Burton, FL, Stensel, HD. (2014). Wastewater Engineering: Treatment and Resource Recovery. 5th ed. New York: McGraw-Hill.
  • Dareioti, MA, Kornaros, M. (2014). Effect of Hydraulic Retention Time (HRT) on the Anaerobic Co-Digestion of Agro-industrial Wastes in a Two-Stage CSTR System. Bioresour. Technol., 167, 407-415.
  • Deublein, D, Steinhauser, A. (2011). Biogas from Waste and Renewable Resources: An Introduction. Germany: Wiley-Interscience; 2011.
  • Duan, N, Dong, B, Wu, B, Dai, X. (2012). High-solid Anaerobic Digestion Of Sewage Sludge Under Mesophilic Conditions: Feasibility Study. Bioresour. Technol.,104, 150-156.
  • Eryılmaz, T, Yeşi̇lyurt, M, Gökdoğan, O, Yumak, B. (2015). Determination of Biogas Potential from Animal Waste in Turkey: A Case Study for Yozgat Province. Avrupa Bilim ve Teknoloji Dergisi, 2 (4), 106-111. Retrieved from https://dergipark.org.tr/tr/pub/ejosat/issue/45158/565086.
  • Kanat, G , Erguven, G. (2020). Importance of Solid Waste Management on Composting, Problems and Proposed Solutions: The Case of Turkey. Avrupa Bilim ve Teknoloji Dergisi , (19) , 66-71. DOI: 10.31590/ejosat.672413.
  • Kayhanian, M, Tchobanoglous, G, Brown, RC. (2007). Biomass Conversion Processes For Energy Recovery. In: Kreith, F., Goswami, DY, eds. Handbook of energy efficiency and renewable energy. Florida: CRC Pres, p. 22.1-22.67.
  • Kim, M, Gomec, CY, Ahn, Y, Speece, R. (2003). Hydrolysis and Acidogenesis of Particulate Organic Material in Mesophilic and Thermophilic Anaerobic Digestion. Environ. Technol. 2003;24: 1183-1190.
  • Kocabey, S. (2019). Balıkesir İli İçin Hayvansal Atık Kaynaklı Biyogaz Potansiyelinin Belirlenmesi. Avrupa Bilim ve Teknoloji Dergisi , (17), 234-243. DOI: 10.31590/ejosat.619058.
  • Komemoto, K, Lim, YG, Nagao, N, Onoue, Y, Niwa, C, Toda, T. (2009). Effect of Temperature on VFA’s and Biogas Production in Anaerobic Solubilization of Food Waste. Waste Manage., 29, 2950-2955.
  • Kozuchowska, J, Evison, LM. (1995). VFA Production in Pre-acidification Systems without pH Control. Environ. Technol., 16, 667-675.
  • Li, W, Guo, J, Cheng, H, Wang, W, Dong, R. (2017). Two-phase Anaerobic Digestion of Municipal Solid Wastes Enhanced by Hydrothermal Pretreatment: Viability, Performance and Microbial Community Evaluation. Appl. Energy, 189, 613-622. Lindner, J, Zielonka, S, Oechsner, H, Lemmer, A. (2015). Effect of Different Ph-Values on Process Parameters in Two-Phase Anaerobic Digestion of High-Solid Substrates. Environ. Technol., 36, 198-207
  • Lissens, G, Vandevivere, P, De Baere, L, Biey, E, Verstraete, W. (2001). Solid Waste Digestors: Process Performance and Practice for Municipal Solid Waste Digestion. Water Sci. Technol., 44, 91-102.
  • Moestedt, J, Nordell, E, Hallin, S, Schnürer, A. (2016). Two-Stage Anaerobic Digestion for Reduced Hydrogen Sulphide Production. J. Chem. Technol. Biotechnol., 91, 1055-1062.
  • Nakakubo, R, Møller, HB, Nielsen, AM, Matsuda, J. (2008). Ammonia inhibition of methanogenesis and identification of process indicators during anaerobic digestion. Environ. Eng. Sci., 25, 1487-1496.
  • Nayono, SE. 2010 Anaerobic Digestion of Organic Solid Waste for Energy Production [dissertation]. Germany: Karlsruhe Institute of Technology.
  • Paudel, S, Kang, Y, Yoo, YS, Seo, GT. (2017). Effect of Volumetric Organic Loading Rate (OLR) on H2 and CH4 Production by Two-Stage Anaerobic Co-Digestion of Food Waste And Brown Water. Waste Manage., 61:484-493.
  • Pavan, P, Battistoni, P, Cecchi, F, Mata-Alvarez, J. (2000) Two-Phase Anaerobic Digestion of Source Sorted OFMSW (Organic Fraction Of Municipal Solid Waste): Performance and Kinetic Study. Water Sci. Technol., 41, 111-118.
  • Ramos-Suárez, J, Arroyo, NC, González-Fernández, C. (2015). The Role of Anaerobic Digestion in Algal Biorefineries: Clean Energy Production, Organic Waste Treatment, and Nutrient Loop Closure. In: Singh B, Kuldeep B, Faizal B, eds. Algae and environmental sustainability. India: Springer; p. 53-76.
  • Rapport, J, Zhang, R, Jenkins, BM, Williams, RB. (2008). Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste. In: California Environmental Protection Agency. California: California Integrated Waste Management Board.
  • Rincón, B, Borja, R, González, JM, Portillo, MC, Sáiz-Jiménez, C. (2008). Influence of Organic Loading Rate and Hydraulic Retention Time on the Performance, Stability and Microbial Communities of One-Stage Anaerobic Digestion of Two-Phase Olive Mill Solid Residue. Biochem. Energ. J., 40, 253-261.
  • Roos, K, Martin, J, Moser, M. (2004). AgSTAR handbook: A Manual for Developing Biogas Systems at Commercial Farms in the United States. US EPA.
  • Rosgaard, L, Andric, P, Dam-Johansen, K, Pedersen, S, Meyer, AS. (2007). Effects of Substrate Loading on Enzymatic Hydrolysis and Viscosity of Pretreated Barley Straw. Appl. Biochem. Biotechnol., 143, 27-40.
  • Stewart, WC. (2014). Three Stage, Multiple Phase Anaerobic Digestion System and Method [Internet]. Google Patents.
  • Tchobanoglous, G, Burton, FL, Stensel, HD. (2003). Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill Education.
  • Turker, G. (2020). Organik Atıklardan Biyogaz Üretimi, Lambert Academic Publishing
  • Turovskiy, IS, Mathai, P. (2006). Wastewater Sludge Processing. New Jersey: Wiley-Interscience.
  • Uemura, S. (2010). Mineral Requirements for Mesophilic and Thermophilic Anaerobic Digestion of Organic Solid Waste. Int. J. Environ. Res., 4, 33-40.
  • Yen, HW, Brune, DE. (2007). Anaerobic Co-Digestion of Algal Sludge And Waste Paper to Produce Methane. Bioresour. Technol., 98,130-134.
  • Yu, HQ, Fang, HHP. (2002). Acidogenesis of Dairy Wastewater at Various pH Levels. Water Sci. Technol., 45, 201-206.
  • Yu, L, Ma, J, Frear, C, Zaher, U, Chen, S. (2013). Two-Stage Anaerobic Digestion Systems Wherein One of the Stages Comprises A Two-Phase System. Google patents.
  • Zenk, H. (2019). Samsun İlinin Hayvan Gübrelerinden Üretilebilecek Elektrik Enerji Potansiyeli. Avrupa Bilim ve Teknoloji Dergisi , (17) , 1307-1312 . DOI: 10.31590/ejosat.661910
  • Zhang, J., Loh, K-C., Li, W., Lim, JW., Dai, Y., Tong, YW. 2016. Three-Stage Anaerobic Digester for Food Waste. Appl. Energ., 194, 287-295.
  • Zhang, J, Sun, K, Wu, M, Zhang, L. (2006). Influence of Temperature on Performance of Anaerobic Digestion of Municipal Solid Waste. J. Environ. Sci., 18, 810-815.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Gökhan Türker 0000-0001-8073-5151

Publication Date January 31, 2021
Published in Issue Year 2021 Issue: 21

Cite

APA Türker, G. (2021). Tarımsal Atıklardan Biyogaz Üretimi İçin Anaerobik Fermentör Tasarımında Etkili Etmenler. Avrupa Bilim Ve Teknoloji Dergisi(21), 181-190. https://doi.org/10.31590/ejosat.784599