Research Article
BibTex RIS Cite

Investigation of the Effects of Thermal Stress on the Performance of MEMS Based Fabry-Pérot Optical Pressure Sensor

Year 2021, Issue: 21, 572 - 580, 31.01.2021

Abstract

In this study, the effect of thermal stresses on FPI (Fabry-Pérot Interferometer) diaphragms made of Poly-Si and Si3Ni4 materials were theoretically investigated and evaluated in terms of the sensitivity and frequency response of the diaphragm. The thicknesses of diaphragms were chosen as 3 µm and 4 µm and radii were chosen as 100 µm, 120 µm and 130 µm, respectively. It was assumed that the Poly-Si diaphragm has compressive stress and Si3Ni4 diaphragm has tensile stress. Results showed that Poly-Si diaphragm with compression stress between -80 MPa and -5 MPa has higher sensitivity compared to Si diaphragm, however, it has a lower frequency response. Similarly, the sensitivity of the Si3Ni4 diaphragm with tensile stress decreases as the stress increases and the frequency response increases as the stress increases. The Si3Ni4 diaphragm with a tensile stress between 1000 MPa and 1750 MPa has a higher frequency response than the Si diaphragm although it shows lower sensitivity compared to Si diaphragm. In addition to the use of diaphragm design in different geometries and materials with different properties as available in the literature, it may possible to design a sensor with a higher sensitivity and a wider frequency response by considering the thermal stresses that occur during the fabrication of the diaphragm. 

References

  • A, N., & T, S. (2016). Design and Analysis of Perforated Si-Diaphragm Based Mems Pressure Sensor for Environmental Applications. ICTACT Journal on Microelectronics, 2(1), 209–215. https://doi.org/10.21917/ijme.2016.0036
  • Baltrušaitis, J. (2019). Measurements of CO 2 and SO 2 in Their Mixtures.
  • Bao, X., & Chen, L. (2012). Recent Progress in Distributed Fiber Optic Sensors. Sensors (Switzerland), 12(7), 8601–8639. https://doi.org/10.3390/s120708601
  • Bhat, K. N. (2007). Silicon micromachined pressure sensors. Journal of the Indian Institute of Science, 87(1), 115–131.
  • Chandra Mukhopadhyay, S. (2015). Wearable Sensors for Human Activity Monitoring. IEEE Sensors Journal, 15(3), 1039–1040.
  • Chattopadhyay, M., & Chowdhury, D. (2017). Design and performance analysis of MEMS capacitive pressure sensor array for measurement of heart rate. Microsystem Technologies, 23(9), 4203–4209. https://doi.org/10.1007/s00542-016-2842-2
  • Cheng, L., Liu, Q., Guo, T., Jun, X., Fan, S., & Wei, J. (2015). An ultra-high sensitivity Fabry-Perot acoustic pressure sensor using a multilayer suspended graphene diaphragm. 2015 IEEE SENSORS - Proceedings, (October). https://doi.org/10.1109/ICSENS.2015.7370318 D. Giovanni. (1982). Flat and Corrugated Diaphragm Design Handbook (first ed.,). CRC Press.
  • Dakin, J. P., Ecke, W., Schroeder, K., & Reuter, M. (2009). Optical fiber sensors using hollow glass spheres and CCD spectrometer interrogator. Optics and Lasers in Engineering, 47(10), 1034–1038. https://doi.org/10.1016/j.optlaseng.2009.05.005
  • Fu, C., Si, W., Li, H., Li, D., Yuan, P., & Yu, Y. (2017). A novel high-performance beam-supported membrane structure with enhanced design flexibility for partial discharge detection. Sensors (Switzerland), 17(3). https://doi.org/10.3390/s17030593
  • Ge, Y., Cai, K., Wang, T., & Zhang, J. (2018). MEMS pressure sensor based on optical Fabry–Perot interference. Optik, 165, 35–40. https://doi.org/10.1016/j.ijleo.2018.03.112
  • Gharaei, H., & Koohsorkhi, J. (2016). Design and characterization of high sensitive MEMS capacitive microphone with fungous coupled diaphragm structure. Microsystem Technologies, 22(2), 401–411. https://doi.org/10.1007/s00542-014-2406-2
  • Hao, X., Tanaka, S., Masuda, A., Nakamura, J., Sudoh, K., Maenaka, K., … Higuchi, K. (2014). Application of silicon on nothing structure for developing a novel capacitive absolute pressure sensor. IEEE Sensors Journal, 14(3), 808–815. https://doi.org/10.1109/JSEN.2013.2288681
  • Hayber, S. E., Tabaru, T. E., & Saracoglu, O. G. (2019). A novel approach based on simulation of tunable MEMS diaphragm for extrinsic Fabry–Perot sensors. Optics Communications, 430(August 2018), 14–23. https://doi.org/10.1016/j.optcom.2018.08.021
  • Jensen, J. B., Pedersen, L. H., Hoiby, P. E., Nielsen, L. B., Hansen, T. P., Folkenberg, J. R., … Bjarklev, A. (2004). Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Optics Letters, 29(17), 1974. https://doi.org/10.1364/ol.29.001974
  • Jiang, H., Cao, G., Xu, C., Zhang, Z., & Liu, S. (2014). Effects of residual stress in the membrane on the performance of surface micromachining silicon nitride pressure sensor. Proceedings of the Electronic Packaging Technology Conference, EPTC, 664–670. https://doi.org/10.1109/ICEPT.2014.6922742
  • Jorgenson, R. C., & Yee, S. S. (1993). A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators: B. Chemical, 12(3), 213–220. https://doi.org/10.1016/0925-4005(93)80021-3
  • Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442–1462. https://doi.org/10.1109/50.618377
  • Laconte J, Flandre D, R. J. (2006). Micromachined thin-film sensors for SOI-CMOS co-integration. Springer Berlin Heidelberg.
  • Lee, B. (2003). Review of the present status of optical fiber sensors. Optical Fiber Technology, 9(2), 57–79. https://doi.org/10.1016/S1068-5200(02)00527-8
  • Lee, B. H., Kim, Y. H., Park, K. S., Eom, J. B., Kim, M. J., Rho, B. S., & Choi, H. Y. (2012). Interferometric fiber optic sensors. Sensors, 12(3), 2467–2486. https://doi.org/10.3390/s120302467
  • Lee, J. O., Narasimhan, V., Balakrishna, A., Smith, M. R., Du, J., Sretavan, D., & Choo, H. (2019). Fabry-Pérot Optical Sensor and Portable Detector for Monitoring High-Resolution Ocular Hemodynamics. IEEE Photonics Technology Letters, 31(6), 423–426. https://doi.org/10.1109/LPT.2019.2896840
  • Lee, J. O., Park, H., Du, J., Balakrishna, A., Chen, O., Sretavan, D., & Choo, H. (2017). A microscale optical implant for continuous in vivo monitoring of intraocular pressure. Microsystems and Nanoengineering, 3(July), 1–9. https://doi.org/10.1038/micronano.2017.57
  • Li, M., Wang, M., & Li, H. (2006). Optical MEMS pressure sensor based on Fabry-Perot interferometry. Optics Express, 14(4), 1497. https://doi.org/10.1364/oe.14.001497
  • Li, Z., Liao, C., Wang, Y., Xu, L., Wang, D., Dong, X., … Zhou, J. (2015). Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer. Optics Express, 23(5), 6673. https://doi.org/10.1364/oe.23.006673
  • Liao, C., Liu, S., Xu, L., Wang, C., Wang, Y., Li, Z., … Wang, D. N. (2014). Sub-micron silica diaphragm-based fiber-tip Fabry–Perot interferometer for pressure measurement. Optics Letters, 39(10), 2827. https://doi.org/10.1364/ol.39.002827
  • Liu, S., Wang, Y., Liao, C., Wang, Y., He, J., Fu, C., … Zhang, F. (2017). Nano silica diaphragm in-fiber cavity for gas pressure measurement. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-00931-0
  • Ma, W., Jiang, Y., Hu, J., Jiang, L., & Zhang, T. (2020). Microelectromechanical system-based, high-finesse, optical fiber Fabry–Perot interferometric pressure sensors. Sensors and Actuators, A: Physical, 302, 111795. https://doi.org/10.1016/j.sna.2019.111795
  • Madhavi, K. Y., Sumithradevi, K. A., Krishna, M., & Vijayalakshmi, M. N. (2011). Analysis of square and circular diaphragms for a MEMS pressure sensor using a data mining tool. Proceedings - 2011 International Conference on Communication Systems and Network Technologies, CSNT 2011, (July), 258–261. https://doi.org/10.1109/CSNT.2011.63
  • Mehmood, Z., Haneef, I., & Udrea, F. (2020). Material selection for optimum design of MEMS pressure sensors. Microsystem Technologies, 26(9), 2751–2766. https://doi.org/10.1007/s00542-019-04601-1
  • Mihailov, S. J., Grobnic, D., Smelser, C. W., Lu, P., Walker, R. B., & Ding, H. (2011). Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask. Optical Materials Express, 1(4), 754. https://doi.org/10.1364/ome.1.000754
  • Mishra, R. B., & Kumar, S. S. (2019). Pre-stressed Diaphragm based Capacitive Pressure Sensor for Blood Pressure Sensing Application. Proceedings - 2018 2nd International Conference on Advances in Computing, Control and Communication Technology, IAC3T 2018, 70–74. https://doi.org/10.1109/IAC3T.2018.8674028
  • MTI Corparation. (n.d.). MTI Corporation. Retrieved from https://www.mtixtl.com/index.aspx
  • Patrick, H. J., Williams, G. M., Kersey, A. D., Pedrazzani, J. R., & Vengsarkar, A. M. (1996). Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technology Letters, 8(9), 1223–1225. https://doi.org/10.1109/68.531843
  • Qi, X., Wang, S., Jiang, J., Liu, K., Wang, X., Yang, Y., & Liu, T. (2019). Fiber Optic Fabry-Perot Pressure Sensor with Embedded MEMS Micro-Cavity for Ultra-High Pressure Detection. Journal of Lightwave Technology, 37(11), 2719–2725. https://doi.org/10.1109/JLT.2018.2876717
  • Raskin, J. P., Brown, A. R., Khuri-Yakub, B. T., & Rebeiz, G. M. (2000). Novel parametric-effect MEMS amplifier. Journal of Microelectromechanical Systems, 9(4), 528–537. https://doi.org/10.1109/84.896775
  • Somer, J., Szendiuch, I., & Urban, F. (2018). Optical pressure sensors for harsh environment. EMPC 2017 - 21st European Microelectronics and Packaging Conference and Exhibition, 2018-Janua(September), 1–5. https://doi.org/10.23919/EMPC.2017.8346868
  • Song, P., Ma, Z., Ma, J., Yang, L., Wei, J., Zhao, Y., … Wang, X. (2020). Recent progress of miniature MEMS pressure sensors. Micromachines, 11(1). https://doi.org/10.3390/mi11010056
  • Totsu, K., Haga, Y., & Esashi, M. (2005). Ultra-miniature fiber-optic pressure sensor using white light interferometry. Journal of Micromechanics and Microengineering, 15(1), 71–75. https://doi.org/10.1088/0960-1317/15/1/011
  • Wang, R., Xie, X., Xu, X., Chen, X., & Xiao, L. (2019). Comparison of Measurements with Finite-Element Analysis of Silicon-Diaphragm-Based Fiber-Optic Fabry–Perot Temperature Sensors Rongkun.
  • Wang, W., Wu, N., Tian, Y., Niezrecki, C., & Wang, X. (2010). Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. Optics Express, 18(9), 9006. https://doi.org/10.1364/oe.18.009006
  • Wu, N., Tian, Y., Zou, X., Zhai, Y., Barringhaus, K., & Wang, X. (2013). A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model. Sensors and Actuators, B: Chemical, 181, 172–178. https://doi.org/10.1016/j.snb.2013.02.002
  • Xu, B., Liu, Y., Wang, D., Jia, D., & Jiang, C. (2017). Optical fiber fabry-pérot interferometer based on an air cavity for gas pressure sensing. IEEE Photonics Journal, 9(2). https://doi.org/10.1109/JPHOT.2017.2685939
  • Xu, F., Ren, D., Shi, X., Li, C., Lu, W., Lu, L., … Yu, B. (2012). High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm. Optics Letters, 37(2), 133. https://doi.org/10.1364/ol.37.000133
  • Yildiz, F., Matsunaga, T., & Haga, Y. (2016b). CMUT arrays incorporating anodically bondable LTCC for small diameter ultrasonic endoscope. In 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2016. https://doi.org/10.1109/NEMS.2016.7758198
  • Yildiz, F., Matsunaga, T., & Haga, Y. (2018). Fabrication and packaging of CMUT using low temperature co-fired ceramic. Micromachines, 9(11). https://doi.org/10.3390/mi9110553
  • Yildiz, F, Matsunaga, T., & Haga, Y. (2016a). Capacitive micromachined ultrasonic transducer arrays incorporating anodically bondable low temperature co-fired ceramic for small diameter ultrasonic endoscope. Micro and Nano Letters, 11(10), 627–631. https://doi.org/10.1049/mnl.2016.0281
  • Yildiz, Fikret. (2018). Capacitive Micromachined Ultrasonic Transducer (CMUT): Analytical Evaluation of Membranes Performance Under Fabrication Related Stress. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 21(3), 217–225.
  • Yin, J., Liu, T., Jiang, J., Liu, K., Wang, S., Qin, Z., & Zou, S. (2014). Batch-producible fiber-optic fabry-pérot sensor for simultaneous pressure and temperature sensing. IEEE Photonics Technology Letters, 26(20), 2070–2073. https://doi.org/10.1109/LPT.2014.2347055
  • Zhang, W., Zhang, H., Du, F., Shi, J., Jin, S., & Zeng, Z. (2015). Pull-In Analysis of the Flat Circular CMUT Cell Featuring Sealed Cavity. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/150279
  • Zhang, Y., Yuan, L., Lan, X., Kaur, A., Huang, J., & Xiao, H. (2013). High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser. Optics Letters, 38(22), 4609. https://doi.org/10.1364/ol.38.004609

Isıl Gerilmelerin MEMS Fabry-Perot Optik Basınç Sensörünün Performansına Etkilerinin Araştırılması

Year 2021, Issue: 21, 572 - 580, 31.01.2021

Abstract

Bu çalışmada Poly-Silikon ve Si3Ni4 malzemelerinden oluşan FPI diyaframları için ısıl gerilmelerin diyaframın hassasiyeti ve frekans cevabı üzerindeki etkileri teorik olarak incelenmiştir ve değerlendirilmiştir. Analitik hesaplamalar için liteatürde mevcut olan denklemler kullanılmıştır. Diyafram kalınlık ve yarıçap değerleri ortamdaki basınç değişimi ile diyaframın yerdeğiştimesinin arasında doğrusal bir ilişki olması için gerekli kısıtlamalar göz önünde bulundurularak belirlenmiştir. Diyaframların kalınlıkları 3 ve 4 µm olarak seçilmiştir. Yarıçapları ise 100 µm,120 µm ve 130 µm olarak seçilmiştir. Poly-Silikon diyafram sıkıştırma gerilmesine sahip olduğu ve -80 MPa ile -5MPa aralığında değiştiği kabul edilmiştir. Si3Ni4 diyaframı da germe gerilmesine sahip olduğu ve gerilme değeride 1000 MPa ile 1750 MPa arasında olduğu varsayılmıştır. Silikon diyafram da sonuçların karşılaştırılması için referans olarak kullanılmıştır. Elde edilen sonuçlara göre sıkıştırma gerilmesinin artması diyaframın hassasiyetini azaltırken frekans cevabını daha yüksek değerlere çıkarmaktadır. Poly-Silikon diyafram için -80 MPa ile -5 MPa aralığındaki sıkıştırma gerilme değerlerinde Silikon diyaframa göre daha yüksek hasssasiyete sahip iken daha düşük frekans cevabına sahiptir. Benzer olarak germe gerilmesine sahip Si3Ni4 diyaframının hassaslığı gerilme arttıkça azalmaktadır ve frekans cevabı da gerilme arttıkça artmaktadır. 1000MPa ile 1750 MPa arasında germe gerilmesine sahip Si3Ni4 diyaframı Silikon diyaframa göre daha düşük hasssasiyet göstermesine rağmen daha yüksek frekans cevabına sahiptir. Diyaframların üretimleri sırasında oluşan ısıl gerilmeler kaplama şartlarına göre kontrol edilebildiğinden bu gerilme değerlerine göre diyaframın hassasiyeti ve frekans cevabı gibi sensörün performansını belirleyen parametreler kontrol edilebilir. Literatürde mevcut olan farklı geometrilerde diyafram tasarımı ve farklı özelliklere sahip malzeme kullanılmasına ek olarak diyaframın üretimi esnasında oluşan ısıl gerilmelerde göz önüne alınarak daha geniş hassasiyete ve frekans cevabına sahip sensör tasarımı mümkün olabilir.

References

  • A, N., & T, S. (2016). Design and Analysis of Perforated Si-Diaphragm Based Mems Pressure Sensor for Environmental Applications. ICTACT Journal on Microelectronics, 2(1), 209–215. https://doi.org/10.21917/ijme.2016.0036
  • Baltrušaitis, J. (2019). Measurements of CO 2 and SO 2 in Their Mixtures.
  • Bao, X., & Chen, L. (2012). Recent Progress in Distributed Fiber Optic Sensors. Sensors (Switzerland), 12(7), 8601–8639. https://doi.org/10.3390/s120708601
  • Bhat, K. N. (2007). Silicon micromachined pressure sensors. Journal of the Indian Institute of Science, 87(1), 115–131.
  • Chandra Mukhopadhyay, S. (2015). Wearable Sensors for Human Activity Monitoring. IEEE Sensors Journal, 15(3), 1039–1040.
  • Chattopadhyay, M., & Chowdhury, D. (2017). Design and performance analysis of MEMS capacitive pressure sensor array for measurement of heart rate. Microsystem Technologies, 23(9), 4203–4209. https://doi.org/10.1007/s00542-016-2842-2
  • Cheng, L., Liu, Q., Guo, T., Jun, X., Fan, S., & Wei, J. (2015). An ultra-high sensitivity Fabry-Perot acoustic pressure sensor using a multilayer suspended graphene diaphragm. 2015 IEEE SENSORS - Proceedings, (October). https://doi.org/10.1109/ICSENS.2015.7370318 D. Giovanni. (1982). Flat and Corrugated Diaphragm Design Handbook (first ed.,). CRC Press.
  • Dakin, J. P., Ecke, W., Schroeder, K., & Reuter, M. (2009). Optical fiber sensors using hollow glass spheres and CCD spectrometer interrogator. Optics and Lasers in Engineering, 47(10), 1034–1038. https://doi.org/10.1016/j.optlaseng.2009.05.005
  • Fu, C., Si, W., Li, H., Li, D., Yuan, P., & Yu, Y. (2017). A novel high-performance beam-supported membrane structure with enhanced design flexibility for partial discharge detection. Sensors (Switzerland), 17(3). https://doi.org/10.3390/s17030593
  • Ge, Y., Cai, K., Wang, T., & Zhang, J. (2018). MEMS pressure sensor based on optical Fabry–Perot interference. Optik, 165, 35–40. https://doi.org/10.1016/j.ijleo.2018.03.112
  • Gharaei, H., & Koohsorkhi, J. (2016). Design and characterization of high sensitive MEMS capacitive microphone with fungous coupled diaphragm structure. Microsystem Technologies, 22(2), 401–411. https://doi.org/10.1007/s00542-014-2406-2
  • Hao, X., Tanaka, S., Masuda, A., Nakamura, J., Sudoh, K., Maenaka, K., … Higuchi, K. (2014). Application of silicon on nothing structure for developing a novel capacitive absolute pressure sensor. IEEE Sensors Journal, 14(3), 808–815. https://doi.org/10.1109/JSEN.2013.2288681
  • Hayber, S. E., Tabaru, T. E., & Saracoglu, O. G. (2019). A novel approach based on simulation of tunable MEMS diaphragm for extrinsic Fabry–Perot sensors. Optics Communications, 430(August 2018), 14–23. https://doi.org/10.1016/j.optcom.2018.08.021
  • Jensen, J. B., Pedersen, L. H., Hoiby, P. E., Nielsen, L. B., Hansen, T. P., Folkenberg, J. R., … Bjarklev, A. (2004). Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions. Optics Letters, 29(17), 1974. https://doi.org/10.1364/ol.29.001974
  • Jiang, H., Cao, G., Xu, C., Zhang, Z., & Liu, S. (2014). Effects of residual stress in the membrane on the performance of surface micromachining silicon nitride pressure sensor. Proceedings of the Electronic Packaging Technology Conference, EPTC, 664–670. https://doi.org/10.1109/ICEPT.2014.6922742
  • Jorgenson, R. C., & Yee, S. S. (1993). A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators: B. Chemical, 12(3), 213–220. https://doi.org/10.1016/0925-4005(93)80021-3
  • Kersey, A. D., Davis, M. A., Patrick, H. J., LeBlanc, M., Koo, K. P., Askins, C. G., … Friebele, E. J. (1997). Fiber grating sensors. Journal of Lightwave Technology, 15(8), 1442–1462. https://doi.org/10.1109/50.618377
  • Laconte J, Flandre D, R. J. (2006). Micromachined thin-film sensors for SOI-CMOS co-integration. Springer Berlin Heidelberg.
  • Lee, B. (2003). Review of the present status of optical fiber sensors. Optical Fiber Technology, 9(2), 57–79. https://doi.org/10.1016/S1068-5200(02)00527-8
  • Lee, B. H., Kim, Y. H., Park, K. S., Eom, J. B., Kim, M. J., Rho, B. S., & Choi, H. Y. (2012). Interferometric fiber optic sensors. Sensors, 12(3), 2467–2486. https://doi.org/10.3390/s120302467
  • Lee, J. O., Narasimhan, V., Balakrishna, A., Smith, M. R., Du, J., Sretavan, D., & Choo, H. (2019). Fabry-Pérot Optical Sensor and Portable Detector for Monitoring High-Resolution Ocular Hemodynamics. IEEE Photonics Technology Letters, 31(6), 423–426. https://doi.org/10.1109/LPT.2019.2896840
  • Lee, J. O., Park, H., Du, J., Balakrishna, A., Chen, O., Sretavan, D., & Choo, H. (2017). A microscale optical implant for continuous in vivo monitoring of intraocular pressure. Microsystems and Nanoengineering, 3(July), 1–9. https://doi.org/10.1038/micronano.2017.57
  • Li, M., Wang, M., & Li, H. (2006). Optical MEMS pressure sensor based on Fabry-Perot interferometry. Optics Express, 14(4), 1497. https://doi.org/10.1364/oe.14.001497
  • Li, Z., Liao, C., Wang, Y., Xu, L., Wang, D., Dong, X., … Zhou, J. (2015). Highly-sensitive gas pressure sensor using twin-core fiber based in-line Mach-Zehnder interferometer. Optics Express, 23(5), 6673. https://doi.org/10.1364/oe.23.006673
  • Liao, C., Liu, S., Xu, L., Wang, C., Wang, Y., Li, Z., … Wang, D. N. (2014). Sub-micron silica diaphragm-based fiber-tip Fabry–Perot interferometer for pressure measurement. Optics Letters, 39(10), 2827. https://doi.org/10.1364/ol.39.002827
  • Liu, S., Wang, Y., Liao, C., Wang, Y., He, J., Fu, C., … Zhang, F. (2017). Nano silica diaphragm in-fiber cavity for gas pressure measurement. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-00931-0
  • Ma, W., Jiang, Y., Hu, J., Jiang, L., & Zhang, T. (2020). Microelectromechanical system-based, high-finesse, optical fiber Fabry–Perot interferometric pressure sensors. Sensors and Actuators, A: Physical, 302, 111795. https://doi.org/10.1016/j.sna.2019.111795
  • Madhavi, K. Y., Sumithradevi, K. A., Krishna, M., & Vijayalakshmi, M. N. (2011). Analysis of square and circular diaphragms for a MEMS pressure sensor using a data mining tool. Proceedings - 2011 International Conference on Communication Systems and Network Technologies, CSNT 2011, (July), 258–261. https://doi.org/10.1109/CSNT.2011.63
  • Mehmood, Z., Haneef, I., & Udrea, F. (2020). Material selection for optimum design of MEMS pressure sensors. Microsystem Technologies, 26(9), 2751–2766. https://doi.org/10.1007/s00542-019-04601-1
  • Mihailov, S. J., Grobnic, D., Smelser, C. W., Lu, P., Walker, R. B., & Ding, H. (2011). Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask. Optical Materials Express, 1(4), 754. https://doi.org/10.1364/ome.1.000754
  • Mishra, R. B., & Kumar, S. S. (2019). Pre-stressed Diaphragm based Capacitive Pressure Sensor for Blood Pressure Sensing Application. Proceedings - 2018 2nd International Conference on Advances in Computing, Control and Communication Technology, IAC3T 2018, 70–74. https://doi.org/10.1109/IAC3T.2018.8674028
  • MTI Corparation. (n.d.). MTI Corporation. Retrieved from https://www.mtixtl.com/index.aspx
  • Patrick, H. J., Williams, G. M., Kersey, A. D., Pedrazzani, J. R., & Vengsarkar, A. M. (1996). Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technology Letters, 8(9), 1223–1225. https://doi.org/10.1109/68.531843
  • Qi, X., Wang, S., Jiang, J., Liu, K., Wang, X., Yang, Y., & Liu, T. (2019). Fiber Optic Fabry-Perot Pressure Sensor with Embedded MEMS Micro-Cavity for Ultra-High Pressure Detection. Journal of Lightwave Technology, 37(11), 2719–2725. https://doi.org/10.1109/JLT.2018.2876717
  • Raskin, J. P., Brown, A. R., Khuri-Yakub, B. T., & Rebeiz, G. M. (2000). Novel parametric-effect MEMS amplifier. Journal of Microelectromechanical Systems, 9(4), 528–537. https://doi.org/10.1109/84.896775
  • Somer, J., Szendiuch, I., & Urban, F. (2018). Optical pressure sensors for harsh environment. EMPC 2017 - 21st European Microelectronics and Packaging Conference and Exhibition, 2018-Janua(September), 1–5. https://doi.org/10.23919/EMPC.2017.8346868
  • Song, P., Ma, Z., Ma, J., Yang, L., Wei, J., Zhao, Y., … Wang, X. (2020). Recent progress of miniature MEMS pressure sensors. Micromachines, 11(1). https://doi.org/10.3390/mi11010056
  • Totsu, K., Haga, Y., & Esashi, M. (2005). Ultra-miniature fiber-optic pressure sensor using white light interferometry. Journal of Micromechanics and Microengineering, 15(1), 71–75. https://doi.org/10.1088/0960-1317/15/1/011
  • Wang, R., Xie, X., Xu, X., Chen, X., & Xiao, L. (2019). Comparison of Measurements with Finite-Element Analysis of Silicon-Diaphragm-Based Fiber-Optic Fabry–Perot Temperature Sensors Rongkun.
  • Wang, W., Wu, N., Tian, Y., Niezrecki, C., & Wang, X. (2010). Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. Optics Express, 18(9), 9006. https://doi.org/10.1364/oe.18.009006
  • Wu, N., Tian, Y., Zou, X., Zhai, Y., Barringhaus, K., & Wang, X. (2013). A miniature fiber optic blood pressure sensor and its application in in vivo blood pressure measurements of a swine model. Sensors and Actuators, B: Chemical, 181, 172–178. https://doi.org/10.1016/j.snb.2013.02.002
  • Xu, B., Liu, Y., Wang, D., Jia, D., & Jiang, C. (2017). Optical fiber fabry-pérot interferometer based on an air cavity for gas pressure sensing. IEEE Photonics Journal, 9(2). https://doi.org/10.1109/JPHOT.2017.2685939
  • Xu, F., Ren, D., Shi, X., Li, C., Lu, W., Lu, L., … Yu, B. (2012). High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm. Optics Letters, 37(2), 133. https://doi.org/10.1364/ol.37.000133
  • Yildiz, F., Matsunaga, T., & Haga, Y. (2016b). CMUT arrays incorporating anodically bondable LTCC for small diameter ultrasonic endoscope. In 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2016. https://doi.org/10.1109/NEMS.2016.7758198
  • Yildiz, F., Matsunaga, T., & Haga, Y. (2018). Fabrication and packaging of CMUT using low temperature co-fired ceramic. Micromachines, 9(11). https://doi.org/10.3390/mi9110553
  • Yildiz, F, Matsunaga, T., & Haga, Y. (2016a). Capacitive micromachined ultrasonic transducer arrays incorporating anodically bondable low temperature co-fired ceramic for small diameter ultrasonic endoscope. Micro and Nano Letters, 11(10), 627–631. https://doi.org/10.1049/mnl.2016.0281
  • Yildiz, Fikret. (2018). Capacitive Micromachined Ultrasonic Transducer (CMUT): Analytical Evaluation of Membranes Performance Under Fabrication Related Stress. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 21(3), 217–225.
  • Yin, J., Liu, T., Jiang, J., Liu, K., Wang, S., Qin, Z., & Zou, S. (2014). Batch-producible fiber-optic fabry-pérot sensor for simultaneous pressure and temperature sensing. IEEE Photonics Technology Letters, 26(20), 2070–2073. https://doi.org/10.1109/LPT.2014.2347055
  • Zhang, W., Zhang, H., Du, F., Shi, J., Jin, S., & Zeng, Z. (2015). Pull-In Analysis of the Flat Circular CMUT Cell Featuring Sealed Cavity. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/150279
  • Zhang, Y., Yuan, L., Lan, X., Kaur, A., Huang, J., & Xiao, H. (2013). High-temperature fiber-optic Fabry–Perot interferometric pressure sensor fabricated by femtosecond laser. Optics Letters, 38(22), 4609. https://doi.org/10.1364/ol.38.004609
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fikret Yıldız 0000-0003-4846-3998

Publication Date January 31, 2021
Published in Issue Year 2021 Issue: 21

Cite

APA Yıldız, F. (2021). Isıl Gerilmelerin MEMS Fabry-Perot Optik Basınç Sensörünün Performansına Etkilerinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(21), 572-580.