Research Article
BibTex RIS Cite

Değerli Metal Katalizörlerde Katalizör Destek Malzemesi Olarak Biyotabanlı Malzemelerin Üretilmesi ve Karakterizasyonu

Year 2021, Issue: 23, 181 - 188, 30.04.2021
https://doi.org/10.31590/ejosat.858676

Abstract

Katalizörler kimya endüstrisinde geniş bir alanda kullanılan ve kullanıldığı sektörde maliyeti artıran en önemli kalemlerden biridir. Özellikle değerli metallerin katalizör olarak kullanıldığı reaksiyonlarda katalizör destek malzemesinin kullanılması, katalizör maliyetinin azaltılması için önem arz etmektedir. Karbonlu malzemeler katalizör desteği için istenen özellikleri sağlaması nedeniyle heterojen kataliz reaksiyonlarında uzun süredir kullanılmaktadır ve bu malzemelerin biyokütle gibi sürdürülebilir ve yenilenebilir bir kaynaktan elde edilebilmesi önemlidir. Yapılan bu çalışmada, göknar ağacı talaşından biyotabanlı malzeme elde edilmesi ve bu malzemelerin karbonlu katalizör destek malzemesi olarak kullanılabilirliği araştırılmıştır. Çalışmada termokimyasal yöntemler olan karbonizasyon yöntemi ile biyochar; hidrotermal karbonizasyon yöntemi ile de hidrochar elde edilmiştir. Hem ham biyokütleye, hem de biyochar ve hidrochar örneklerine değerli metallerden olan Pt ve Pd kütlece %1 oranında yüklenmiştir. Elde edilen katalizör örneklerinin fizikokimyasal ve yüzey özellikleri farklı teknikler kullanılarak incelenmiş ve elde edilen sonuçlara göre, biyokütlenin katalizör desteği olarak doğrudan kullanılması için uygun özelliklere sahip olmadığı belirlenmiştir. Metal yüklenen biyochar ve hidrocharın katalizör özellikleri incelendiğinde ise örneklerin gözenekliliğinin daha yüksek olduğu, metal dağılımının homojen ve kristal yapısının daha iyi olduğu görülmüştür.

Supporting Institution

Bilecik Şeyh Edebali Üniversitesi

Project Number

2018-02.BŞEÜ.28-01

Thanks

Bu çalışma Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 2018-02.BŞEÜ.28-01 numaralı proje ile desteklenmiştir.

References

  • Anto, S., Sudhakar, M. P., Ahamed, T. S., Samuel, M. S., Mathimani, T., Brindhadevi, K., & Pugazhendhi, A. (2021). Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel, 285, 119205.
  • Arcanjo, M. R. A., Silva Jr, I. J., Rodríguez-Castellón, E., Infantes-Molina, A., & Vieira, R. S. (2017). Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catalysis Today, 279, 317-326.
  • Armor, J., Farrauto, R., & Iglesia, E. (2008). What is catalysis. The North American Catalñysis Society (NACS) http: www. nacatsoc//org/what. asp.
  • ASTM (1983), Standart test method for volatile matter in analysis sample refuse derived fuel-3, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA, E-897-82.
  • ASTM (1983), Standart test method for ash in wood, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA, D-1102-84.
  • Balagurumurthy, B., Singh, R., & Bhaskar, T. (2015). Catalysts for thermochemical conversion of biomass. In Recent Advances in Thermo-Chemical Conversion of Biomass (pp. 109-132). Elsevier.
  • Balajii, M., & Niju, S. (2019). Biochar-derived heterogeneous catalysts for biodiesel production. Environmental Chemistry Letters, 1-23.
  • Bartholomew, C. H., & Farrauto, R. J. (2011). Fundamentals of industrial catalytic processes. John Wiley & Sons.
  • Casoni, A. I., Hoch, P. M., Volpe, M. A., & Gutierrez, V. S. (2018). Catalytic conversion of furfural from pyrolysis of sunflower seed hulls for producing bio-based furfuryl alcohol. Journal of Cleaner Production, 178, 237-246.
  • Cheng, F., & Li, X. (2018). Preparation and application of biochar-based catalysts for biofuel production. Catalysts, 8(9), 346.
  • Chi, N. T. L., Anto, S., Ahamed, T. S., Kumar, S. S., Shanmugam, S., Samuel, M. S., & Pugazhendhi, A. (2020). A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel, 119411.
  • De Araujo, J. C., Sousa, C. B., Oliveira, A. C., Freire, F. N., Ayala, A. P., & Oliveira, A. C. (2010). Dehydrogenation of ethylbenzene with CO2 to produce styrene over Fe-containing ceramic composites. Applied Catalysis A: General, 377(1-2), 55-63.
  • He, S., Sun, C., Du, H., Dai, X., & Wang, B. (2008). Effect of carbon addition on the Pt-Sn/γ-Al2O3 catalyst for long chain paraffin dehydrogenation to olefin. Chemical Engineering Journal, 141(1-3), 284-289.
  • Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378.
  • Khan, A. S., Man, Z., Bustam, M. A., Nasrullah, A., Ullah, Z., Sarwono, A., Muhammad, N. (2018). Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohydrate polymers, 181, 208-214.
  • Kubota, T., Ogawa, H., Okamoto, Y., Misaki, T., & Sugimura, T. (2012). Preparation of Pd/C designed for chiral modified catalyst: Comparison with Pd/TiO2 in enantioselective hydrogenation of α-phenylcinnamic acid. Applied Catalysis A: General, 437, 18-23.
  • Lee, J., Kim, K. H., & Kwon, E. E. (2017). Biochar as a catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79.
  • Liang, D., Gao, J., Wang, J., Chen, P., Hou, Z., & Zheng, X. (2009). Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catalysis Communications, 10(12), 1586-1590.
  • Maliutina, K., Tahmasebi, A., Yu, J., & Saltykov, S. N. (2017). Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor. Energy Conversion and Management, 151, 426-438.
  • Ok, Y. S., Chang, S. X., Gao, B., & Chung, H. J. (2015). SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation, 4, 206-209.
  • O’Neill, B. J., Jackson, D. H., Lee, J., Canlas, C., Stair, P. C., Marshall, C. L., & Huber, G. W. (2015). Catalyst design with atomic layer deposition. Acs Catalysis, 5(3), 1804-1825.
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055-1064.
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., & Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148, 276-291.
  • Sudarsanam, P., Peeters, E., Makshina, E. V., Parvulescu, V. I., & Sels, B. F. (2019). Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 48(8), 2366-2421.
  • Taarning, E., Osmundsen, C. M., Yang, X., Voss, B., Andersen, S. I., & Christensen, C. H. (2011). Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy & Environmental Science, 4(3), 793-804.
  • Xiong, X., Iris, K. M., Cao, L., Tsang, D. C., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource technology, 246, 254-270.
  • Yaman, E., Ulusal, A. & Uzun, B.B. (2021). Co-pyrolysis of lignite and rapeseed cake: a comparative study on the thermal decomposition behavior and pyrolysis kinetics. SN Applied Science, 3, 97.
  • Hopa, D. Y., & Yılmaz, N. (2019). Haşhaş Kapsülü Küspesinin Sabit Yataklı Reaktörde Katalitik Pirolizi. Avrupa Bilim ve Teknoloji Dergisi, (17), 581-588.

Production and Characterization of Bio-based Materials as Support for Precious Metal Catalysts

Year 2021, Issue: 23, 181 - 188, 30.04.2021
https://doi.org/10.31590/ejosat.858676

Abstract

Catalysts are one of the most important component that are used in a wide area in the chemical industry and increase the cost in the sector. Especially, the use of catalyst support material with precious metal catalyst is important in reducing the catalyst cost. Carbonaceous materials have been used in heterogeneous catalysis reactions as they provide the desired properties for catalyst support, and it is important that these materials can be obtained from a sustainable and renewable source such as biomass. In this study, production of bio-based material from fir wood sawdust and using these materials as carbonaceous catalyst support materials were investigated. Biochar was produced via carbonization while hydrochar was produced via hydrothermal carbonization among the thermochemical processes. Precious metals Pt and Pd was loaded to biomass, biochar and hydrochar as wt.1%. The physicochemical and surface properties of the obtained catalyst samples were examined using different techniques. It was determined that the biomass did not have suitable properties for direct use as catalyst support. When the catalyst properties of the metal loaded biomass and hydrochar were examined, it was seen that the porosity of the samples was higher, the metal distribution was homogeneous and the crystal structure was better.

Project Number

2018-02.BŞEÜ.28-01

References

  • Anto, S., Sudhakar, M. P., Ahamed, T. S., Samuel, M. S., Mathimani, T., Brindhadevi, K., & Pugazhendhi, A. (2021). Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel, 285, 119205.
  • Arcanjo, M. R. A., Silva Jr, I. J., Rodríguez-Castellón, E., Infantes-Molina, A., & Vieira, R. S. (2017). Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catalysis Today, 279, 317-326.
  • Armor, J., Farrauto, R., & Iglesia, E. (2008). What is catalysis. The North American Catalñysis Society (NACS) http: www. nacatsoc//org/what. asp.
  • ASTM (1983), Standart test method for volatile matter in analysis sample refuse derived fuel-3, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA, E-897-82.
  • ASTM (1983), Standart test method for ash in wood, In ASTM Annual Book of Ame. Soc. for Testing and Materials Standarts, Easton, M.D., USA, D-1102-84.
  • Balagurumurthy, B., Singh, R., & Bhaskar, T. (2015). Catalysts for thermochemical conversion of biomass. In Recent Advances in Thermo-Chemical Conversion of Biomass (pp. 109-132). Elsevier.
  • Balajii, M., & Niju, S. (2019). Biochar-derived heterogeneous catalysts for biodiesel production. Environmental Chemistry Letters, 1-23.
  • Bartholomew, C. H., & Farrauto, R. J. (2011). Fundamentals of industrial catalytic processes. John Wiley & Sons.
  • Casoni, A. I., Hoch, P. M., Volpe, M. A., & Gutierrez, V. S. (2018). Catalytic conversion of furfural from pyrolysis of sunflower seed hulls for producing bio-based furfuryl alcohol. Journal of Cleaner Production, 178, 237-246.
  • Cheng, F., & Li, X. (2018). Preparation and application of biochar-based catalysts for biofuel production. Catalysts, 8(9), 346.
  • Chi, N. T. L., Anto, S., Ahamed, T. S., Kumar, S. S., Shanmugam, S., Samuel, M. S., & Pugazhendhi, A. (2020). A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel, 119411.
  • De Araujo, J. C., Sousa, C. B., Oliveira, A. C., Freire, F. N., Ayala, A. P., & Oliveira, A. C. (2010). Dehydrogenation of ethylbenzene with CO2 to produce styrene over Fe-containing ceramic composites. Applied Catalysis A: General, 377(1-2), 55-63.
  • He, S., Sun, C., Du, H., Dai, X., & Wang, B. (2008). Effect of carbon addition on the Pt-Sn/γ-Al2O3 catalyst for long chain paraffin dehydrogenation to olefin. Chemical Engineering Journal, 141(1-3), 284-289.
  • Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378.
  • Khan, A. S., Man, Z., Bustam, M. A., Nasrullah, A., Ullah, Z., Sarwono, A., Muhammad, N. (2018). Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids. Carbohydrate polymers, 181, 208-214.
  • Kubota, T., Ogawa, H., Okamoto, Y., Misaki, T., & Sugimura, T. (2012). Preparation of Pd/C designed for chiral modified catalyst: Comparison with Pd/TiO2 in enantioselective hydrogenation of α-phenylcinnamic acid. Applied Catalysis A: General, 437, 18-23.
  • Lee, J., Kim, K. H., & Kwon, E. E. (2017). Biochar as a catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79.
  • Liang, D., Gao, J., Wang, J., Chen, P., Hou, Z., & Zheng, X. (2009). Selective oxidation of glycerol in a base-free aqueous solution over different sized Pt catalysts. Catalysis Communications, 10(12), 1586-1590.
  • Maliutina, K., Tahmasebi, A., Yu, J., & Saltykov, S. N. (2017). Comparative study on flash pyrolysis characteristics of microalgal and lignocellulosic biomass in entrained-flow reactor. Energy Conversion and Management, 151, 426-438.
  • Ok, Y. S., Chang, S. X., Gao, B., & Chung, H. J. (2015). SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation, 4, 206-209.
  • O’Neill, B. J., Jackson, D. H., Lee, J., Canlas, C., Stair, P. C., Marshall, C. L., & Huber, G. W. (2015). Catalyst design with atomic layer deposition. Acs Catalysis, 5(3), 1804-1825.
  • Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055-1064.
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C., Zhang, M., Vithanage, M., Mandal, S., & Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere, 148, 276-291.
  • Sudarsanam, P., Peeters, E., Makshina, E. V., Parvulescu, V. I., & Sels, B. F. (2019). Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 48(8), 2366-2421.
  • Taarning, E., Osmundsen, C. M., Yang, X., Voss, B., Andersen, S. I., & Christensen, C. H. (2011). Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy & Environmental Science, 4(3), 793-804.
  • Xiong, X., Iris, K. M., Cao, L., Tsang, D. C., Zhang, S., & Ok, Y. S. (2017). A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource technology, 246, 254-270.
  • Yaman, E., Ulusal, A. & Uzun, B.B. (2021). Co-pyrolysis of lignite and rapeseed cake: a comparative study on the thermal decomposition behavior and pyrolysis kinetics. SN Applied Science, 3, 97.
  • Hopa, D. Y., & Yılmaz, N. (2019). Haşhaş Kapsülü Küspesinin Sabit Yataklı Reaktörde Katalitik Pirolizi. Avrupa Bilim ve Teknoloji Dergisi, (17), 581-588.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Elif Yaman 0000-0002-1052-8779

Fatma Gökmen This is me 0000-0002-5548-8790

Sinan Temel 0000-0002-0889-9490

Nurgül Özbay 0000-0002-0666-3417

Gamzenur Özsin 0000-0001-5091-5485

Project Number 2018-02.BŞEÜ.28-01
Publication Date April 30, 2021
Published in Issue Year 2021 Issue: 23

Cite

APA Yaman, E., Gökmen, F., Temel, S., Özbay, N., et al. (2021). Değerli Metal Katalizörlerde Katalizör Destek Malzemesi Olarak Biyotabanlı Malzemelerin Üretilmesi ve Karakterizasyonu. Avrupa Bilim Ve Teknoloji Dergisi(23), 181-188. https://doi.org/10.31590/ejosat.858676