Research Article
BibTex RIS Cite

Yanıt Yüzey Metodolojisi Kullanılarak 1-Propanol/Benzin Yakıt Karışımlarının Egzoz Emisyonlarına Etkisinin Araştırılması

Year 2021, Issue: 24, 67 - 74, 15.04.2021
https://doi.org/10.31590/ejosat.898563

Abstract

Bu çalışmada, 1-Propanolün benzin ile karıştırılması ile elde edilen yakıt karışımlarının egzoz emisyon değerlerine etkisi yanıt yüzey metodolojisi ile deneysel olarak incelenmiştir. Yanıt Yüzey Metodolojisi (YYM) için giriş faktörleri 1-Propanol oranı ile Motor devri ve yanıt değerleri ise karbonmonoksit (CO), karbon dioksit (CO2), hidrokarbon (HC), Azot Oksit (NO) ve Oksijen (O2) emisyonları olarak belirlenmiştir. Oluşturulan YYM tasarımında 3 Seviye Faktöriyel Tasarım (3SFT) tekniği kullanılarak deneyler planlanmıştır. Deney planları sonucunda motor devri 1500, 2500 ve 3500 d/dk ayrıca 1-propanol oranı ise %5, %10 ve %15 (% hacim) olarak belirlenerek 3 farklı karışım ve %100 Benzin için toplam 12 farklı ölçüm gerçekleştirilmiş ve sonuçlar istatistiksel olarak değerlendirilmiştir. Elde edilen sonuçlara göre CO, CO2, HC, O2 ve NO emisyonları için optimum değerleri sırasıyla %98.58, %98.88, %99.03, %99.33 ve %98.51 doğrulukta % 0.292, %7.07, 45.55 ppm, %7.49 ve 1298.42 ppm olarak tahmin edilmiştir. Sonuçların istatistiksel olarak önemli olması, YYM kullanılarak benzin karışımlarının emisyon değerleri üzerindeki etkilerinin daha az test sayısı ile verimli bir şekilde incelenebildiğini göstermektedir. Çalışma sonuçlarına göre 1-Propanol karışımları tüm devirlerde CO2, HC, O2, NO emisyonlarını azaltmıştır fakat CO emisyonu için en düşük değerler %100 benzin ile yapılan testlerde elde edilmiştir.

References

  • Abdalla, A. N., Tao, H., Bagaber, S. A., Ali, O. M., Kamil, M., Ma, X., & Awad, O. I. (2019). Prediction of emissions and performance of a gasoline engine running with fusel oil–gasoline blends using response surface methodology. Fuel, 253(April), 1–14. https://doi.org/10.1016/j.fuel.2019.04.085
  • Acaroğlu, M., Aydoğan, H., & Özçelik, A. E. (2018). Yakıtlar ve Yanma. Nobel Akademi Yayıncılık.
  • Anderson-Cook, C. M., Borror, C. M., & Montgomery, D. C. (2009). Rejoinder for “Response surface design evaluation and comparison.” Journal of Statistical Planning and Inference, 139(2), 671–674. https://doi.org/10.1016/j.jspi.2008.04.009
  • Bote, M. A., Naik, V. R., & Jagdeeshgouda, K. B. (2020). Optimization of spark ignition engine adopting Taguchi access and response surface methodology. Fuel, 280(May), 118530. https://doi.org/10.1016/j.fuel.2020.118530
  • Bradley, N. (2007). The Response Surface Methodology [Indiana University of South Bend]. https://doi.org/10.1007/978-3-662-44324-8_1998
  • Carley, K. M., Kamneva, N. Y., & Reminga, J. (2004). Response surface methodology, CASOS Technical Report. https://doi.org/10.1002/wics.73
  • Draper, N. R. (1992). Introduction to Box and Wilson (1951) On the Experimental Attainment of Optimum Conditions. 1951, 267–269. https://doi.org/10.1007/978-1-4612-4380-9_22
  • Gawale, G. R., & Naga Srinivasulu, G. (2020). Experimental investigation of propanol dual fuel HCCI engine performance: Optimization of propanol mass flow rate, impact of butanol blends (B10/B20/B30) as fuel substitute for diesel. Fuel, 279(March), 118535. https://doi.org/10.1016/j.fuel.2020.118535
  • Gökmen, M. S., & Bilban, M. (2020). Optimization of Internal Combustion Engine Tests with Response Surface Methodology : A Review. Renewable Energy Sources Energy Policy and Energy Management, 1(2), 34–41.
  • Jarmon, G., & Anderson, P. (2005). Special Gasoline Blends (No. 05–421; GAO, Issue June). Li, W., Zhang, Y., Mei, B., Li, Y., Cao, C., Zou, J., Yang, J., & Cheng, Z. (2019). Experimental and kinetic modeling study of n-propanol and i-propanol combustion: Flow reactor pyrolysis and laminar flame propagation. Combustion and Flame, 207, 171–185. https://doi.org/10.1016/j.combustflame.2019.05.040
  • Liu, X., Wang, H., Zheng, Z., Liu, J., Reitz, R. D., & Yao, M. (2016). Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications. Energy, 114, 542–558. https://doi.org/10.1016/j.energy.2016.08.001
  • Montgomery, D. C. (2006). Design and Analysis of Experiments. In Technometrics (Vol. 48, Issue 1). https://doi.org/10.1198/tech.2006.s372
  • Mourad, M., & Mahmoud, K. R. M. (2018). Performance investigation of passenger vehicle fueled by propanol/gasoline blend according to a city driving cycle. Energy, 149, 741–749. https://doi.org/10.1016/j.energy.2018.02.099
  • Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering, 48(December 2012), 500–506. https://doi.org/10.1016/j.proeng.2012.09.545
  • Papa, A. J. (2000). Propanols. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a22_173
  • Qian, Y., Guo, J., Zhang, Y., Tao, W., & Lu, X. (2018). Combustion and emission behavior of N-propanol as partially alternative fuel in a direct injection spark ignition engine.
  • Applied Thermal Engineering, 144, 126–136. https://doi.org/10.1016/j.applthermaleng.2018.08.044
  • Reif, K. (2015). Gasoline Engine Management Systems and Components. In Springer Vieweg. Springer Vieweg.
  • Saravanan, S., Rajesh Kumar, B., Varadharajan, A., Rana, D., Sethuramasamyraja, B., & Lakshmi Narayana rao, G. (2017). Optimization of DI diesel engine parameters fueled with iso-butanol/diesel blends – Response surface methodology approach. Fuel, 203, 658–670. https://doi.org/10.1016/j.fuel.2017.04.083
  • Srivastava, S. P., & Hancsók, J. (2014). Fuels and Fuel-Additives. In John Wiley & Sons. John Wiley & Sons.
  • Wagner, J. R., Mount, E. M., & Giles, H. F. (2014). Design of Factorial Experiments. Extrusion, 291–308. https://doi.org/10.1016/B978-1-4377-3481-2.00025-9
  • Yusri, I. M., Mamat, R., Azmi, W. H., Omar, A. I., Obed, M. A., & Shaiful, A. I. M. (2017). Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine. Energy Conversion and Management, 133(2017), 178–195. https://doi.org/10.1016/j.enconman.2016.12.001

Investigation of the Effect of 1-Propanol/Gasoline Fuel Blends on Exhaust Emissions Using Response Surface Methodology

Year 2021, Issue: 24, 67 - 74, 15.04.2021
https://doi.org/10.31590/ejosat.898563

Abstract

References

  • Abdalla, A. N., Tao, H., Bagaber, S. A., Ali, O. M., Kamil, M., Ma, X., & Awad, O. I. (2019). Prediction of emissions and performance of a gasoline engine running with fusel oil–gasoline blends using response surface methodology. Fuel, 253(April), 1–14. https://doi.org/10.1016/j.fuel.2019.04.085
  • Acaroğlu, M., Aydoğan, H., & Özçelik, A. E. (2018). Yakıtlar ve Yanma. Nobel Akademi Yayıncılık.
  • Anderson-Cook, C. M., Borror, C. M., & Montgomery, D. C. (2009). Rejoinder for “Response surface design evaluation and comparison.” Journal of Statistical Planning and Inference, 139(2), 671–674. https://doi.org/10.1016/j.jspi.2008.04.009
  • Bote, M. A., Naik, V. R., & Jagdeeshgouda, K. B. (2020). Optimization of spark ignition engine adopting Taguchi access and response surface methodology. Fuel, 280(May), 118530. https://doi.org/10.1016/j.fuel.2020.118530
  • Bradley, N. (2007). The Response Surface Methodology [Indiana University of South Bend]. https://doi.org/10.1007/978-3-662-44324-8_1998
  • Carley, K. M., Kamneva, N. Y., & Reminga, J. (2004). Response surface methodology, CASOS Technical Report. https://doi.org/10.1002/wics.73
  • Draper, N. R. (1992). Introduction to Box and Wilson (1951) On the Experimental Attainment of Optimum Conditions. 1951, 267–269. https://doi.org/10.1007/978-1-4612-4380-9_22
  • Gawale, G. R., & Naga Srinivasulu, G. (2020). Experimental investigation of propanol dual fuel HCCI engine performance: Optimization of propanol mass flow rate, impact of butanol blends (B10/B20/B30) as fuel substitute for diesel. Fuel, 279(March), 118535. https://doi.org/10.1016/j.fuel.2020.118535
  • Gökmen, M. S., & Bilban, M. (2020). Optimization of Internal Combustion Engine Tests with Response Surface Methodology : A Review. Renewable Energy Sources Energy Policy and Energy Management, 1(2), 34–41.
  • Jarmon, G., & Anderson, P. (2005). Special Gasoline Blends (No. 05–421; GAO, Issue June). Li, W., Zhang, Y., Mei, B., Li, Y., Cao, C., Zou, J., Yang, J., & Cheng, Z. (2019). Experimental and kinetic modeling study of n-propanol and i-propanol combustion: Flow reactor pyrolysis and laminar flame propagation. Combustion and Flame, 207, 171–185. https://doi.org/10.1016/j.combustflame.2019.05.040
  • Liu, X., Wang, H., Zheng, Z., Liu, J., Reitz, R. D., & Yao, M. (2016). Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications. Energy, 114, 542–558. https://doi.org/10.1016/j.energy.2016.08.001
  • Montgomery, D. C. (2006). Design and Analysis of Experiments. In Technometrics (Vol. 48, Issue 1). https://doi.org/10.1198/tech.2006.s372
  • Mourad, M., & Mahmoud, K. R. M. (2018). Performance investigation of passenger vehicle fueled by propanol/gasoline blend according to a city driving cycle. Energy, 149, 741–749. https://doi.org/10.1016/j.energy.2018.02.099
  • Ostertagová, E. (2012). Modelling using polynomial regression. Procedia Engineering, 48(December 2012), 500–506. https://doi.org/10.1016/j.proeng.2012.09.545
  • Papa, A. J. (2000). Propanols. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a22_173
  • Qian, Y., Guo, J., Zhang, Y., Tao, W., & Lu, X. (2018). Combustion and emission behavior of N-propanol as partially alternative fuel in a direct injection spark ignition engine.
  • Applied Thermal Engineering, 144, 126–136. https://doi.org/10.1016/j.applthermaleng.2018.08.044
  • Reif, K. (2015). Gasoline Engine Management Systems and Components. In Springer Vieweg. Springer Vieweg.
  • Saravanan, S., Rajesh Kumar, B., Varadharajan, A., Rana, D., Sethuramasamyraja, B., & Lakshmi Narayana rao, G. (2017). Optimization of DI diesel engine parameters fueled with iso-butanol/diesel blends – Response surface methodology approach. Fuel, 203, 658–670. https://doi.org/10.1016/j.fuel.2017.04.083
  • Srivastava, S. P., & Hancsók, J. (2014). Fuels and Fuel-Additives. In John Wiley & Sons. John Wiley & Sons.
  • Wagner, J. R., Mount, E. M., & Giles, H. F. (2014). Design of Factorial Experiments. Extrusion, 291–308. https://doi.org/10.1016/B978-1-4377-3481-2.00025-9
  • Yusri, I. M., Mamat, R., Azmi, W. H., Omar, A. I., Obed, M. A., & Shaiful, A. I. M. (2017). Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine. Energy Conversion and Management, 133(2017), 178–195. https://doi.org/10.1016/j.enconman.2016.12.001
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehmet Selman Gökmen 0000-0001-5943-7504

İbrahim Doğan 0000-0002-1448-8911

Hasan Aydoğan 0000-0003-1404-6352

Publication Date April 15, 2021
Published in Issue Year 2021 Issue: 24

Cite

APA Gökmen, M. S., Doğan, İ., & Aydoğan, H. (2021). Yanıt Yüzey Metodolojisi Kullanılarak 1-Propanol/Benzin Yakıt Karışımlarının Egzoz Emisyonlarına Etkisinin Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(24), 67-74. https://doi.org/10.31590/ejosat.898563