Research Article
BibTex RIS Cite

Metamalzeme Tabanlı İki Bantlı Mükemmel Soğurucu

Year 2021, Issue: 25, 28 - 33, 31.08.2021
https://doi.org/10.31590/ejosat.891996

Abstract

Son zamanlarda mükemmel soğurucular (MS), karmaşık elektriksel ve manyetik geçirgenlik özelliklerinden dolayı büyük ilgi görmüştür. Bu yapay yapıları rasyonel bir şekilde tasarlayarak, mükemmel soğurucunun empedansı, elektrik ve manyetik rezonanslarda bağımsız bir ayarlama ile boş alana eşleştirilebilir; ve böylece oluşturulan yapı, orta ve yakın kızılötesi dalga boylarında güçlü soğurmaya yol açar. Özellikle metal-dielektrik bazlı plazmonik metamalzemelerden oluşan nanoyapılar, güçlü yakın alan geliştirme, negatif kırılma indeksi ve optik gizleme gibi benzersiz optik özellikler sergiler. Bu çalışmada, metamalzeme tabanlı farklı rezonanslarda aynı anda %100’ e yakın bir soğurumla çalışan iki bantlı U şeklinde antenlerden oluşan bir MS platformu önerilmiştir. MS platformunun ince ayar mekanizması için sonlu fark zaman alanı (FDTD) simülasyonları aracılığıyla optik yanıtının geometrik parametrelere bağımlılığı sayısal olarak analiz edilmiştir. Soğurum tepkisini ve yakın alan dağılımlarının fiziksel temelleride sayısal olarak incelenmiştir. Sayısal hesaplamalarımız, ikili rezonanslarda U plazmonik anten sisteminin geniş ve kolayca erişilebilen yerel elektromanyetik alanları desteklediğini göstermektedir. Deneysel sonuçlar, teorik hesaplamalar ile oldukça uyumludur. Çift rezonanslı U şekilli antenler sahip oldukları güçlü ve erişilebilir elektromanyetik alandan dolayı güçlü yakın alan özelliklerine sahiptir ve çok sayıda spektral özellik gerektiren birçok uygulama için oldukça avantajlı olabilir. Ayrıca, önerilen U şekilli plazmonik antenlerin rezonans frekansı spektral olarak ayarlanabildiği için aktif filtreler, optik modülatörler, ultra hızlı anahtarlama cihazları, haberleşme, detektör ve biyoalgılama gibi çok çeşitli uygulamalar için de kullanılabilir.

Supporting Institution

Karamanoğlu Mehmetbey ve Boston Üniversitesi

Thanks

Bu çalışmanın yürütülmesinde destek veren Karamanoğlu Mehmetbey ve Boston Üniversitesi’ne teşekkür ederiz.

References

  • A. Degiron, H. J. ((2004)). Optical transmission properties of a single subwavelength aperture in a real metal. Opt. Commun. , 239 (1), 61–66 .
  • Ahmet Ali Yanik, X. W. (2008). Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays. Appl. Phys. Lett. , 93, 081104.
  • Alexander Belushkin, F. Y. (2018). Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray. ACS Nano , 12 (5), 4453–4461.
  • Arif E. Cetin, S. K. (2016). Quantification of Multiple Molecular Fingerprints by Dual-Resonant Perfect Absorber. Adv. Optical Mater. , 4, 1274–1280.
  • Biagioni, T. T. (2019). Semiconductor infrared plasmonics. Nanophotonics , 8 (6), 949–990.
  • Bowen Li, S. Z. (2017). Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers. ACS Nano , 11 (10), 9720–9727.
  • C. M. Soukoulis, S. L. (2007). “Physics. Negative refractive index at optical wavelengths,. Science , 315 (5808), 47-49.
  • Cameron Gilroy, S. H. (2019). Roles of Superchirality and Interference in Chiral Plasmonic Biodetection. J. Phys. Chem. C , 123 (24), 15195–15203.
  • Deepak Sood, C. C. (2017). A polarization insensitive compact ultrathin wide-angle penta-band metamaterial absorber. Journal of Electromagnetic Waves and Applications , 31 (4), 394-404.
  • Grisha Spektor, A. D. (2015). Metafocusing by a Metaspiral Plasmonic Lens. Nano Lett. , 15 (9), 5739–5743.
  • Khwanchai Tantiwanichapan, X. W. (2017). Graphene terahertz plasmons: A combined transmission spectroscopy and Raman microscopy study. ACS Photonics , 4 (8), 2011-2017.
  • Luc Duempelmann, A. L.-D. (2016). Four-Fold Color Filter Based on Plasmonic Phase Retarder. ACS Photonics , 3 (2), 190–196.
  • N. I. Landy, S. S. (2008). Perfect metamaterial absorber. Phys. Rev. Lett. , 100, 207402.
  • Palik, E. D. (1985). Handbook of Optical Constants of Solids. Orlando, FL: Academic.
  • Rana Sadaf Anwar, H. N. (2018). Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digital Communications and Networks , 4 (4), 244-257.
  • Seon-Young Rhim, G. L.-K. (2020). Using Active Surface Plasmons in a Multibit Optical Storage Device to Emulate Long‐Term Synaptic Plasticity. Physica status solidi , 217 (20), 2000354.
  • Ting Xie, Z. C. (2017). A wide-angle and polarization insensitive infrared broad band metamaterial absorber. Optics Communications , 383, 81-86.
  • Tsai, M.-W. &.-H.-Y.-c.-2. (2006). Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays. Applied Physics Letters. , 88, 213112.
  • Wang Xin, Z. B. (2017). Design, Fabrication, and Characterization of a Flexible Dual-Band Metamaterial Absorber. IEEE Photonics Journal , 9 (4), 1-12.
  • Yakov Galutin, E. F. (2017). Invisibility Cloaking Scheme by Evanescent Fields Distortion on Composite Plasmonic Waveguides with Si Nano-Spacer. Scientific Reports , 12076.
  • Yasa Ekşioğlu, A. E. (2018). Multi-band plasmonic platform utilizing UT-shaped graphene antenna arraysoop. Plasmonics , 13 (3), 1081-1088.
  • Zhi Hao Jiang, S. Y. (2011). Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating. ACS Nano , 5 (6), 4641–4647.

Dual Band Perfect Absorber based on Metamaterials

Year 2021, Issue: 25, 28 - 33, 31.08.2021
https://doi.org/10.31590/ejosat.891996

Abstract

Recently, perfect absorbers (PAs) have attracted great attention due to their complex electrical permittivity and magnetic permeability properties. By rationally designing these artificial structures, the impedance of the perfect absorber can be matched to the free space with an independent adjustment in electric and magnetic resonances; and the structure thus leads to strong absorption from mid-IR to near-IR wavelength. Especially, metal-dielectric based plasmonic metamaterials in nanometer scale exhibit unique optical properties such as strong near field enhancement, negative refractive index and optical cloaking. In this study, we propose a dual-band metamaterial base PA platform consisting of U-shaped antennas with unity absorption. We numerically analyzed the dependence of the optical response on geometric parameters through finite difference time domain (FDTD) simulations for the fine tuning mechanism of the PA platform. The physical basis of the absorption response and near-field distributions of these nanoscale antennas were also studied numerically. Our numerical calculations show that U-shaped plasmonic antenna system supports large and easily accessible local electromagnetic fields. Experimental and theoretical results are found to be in good aggrement. U-shaped antennas with dual resonances with large and accessible electromagnetic fields can be highly advantageous for a wide variety of applications that require a large number of spectral features with strong near field properties. In addition, since the resonance frequency of the proposed U-shaped plasmonic antennas can be adjusted spectrally, they can also be used for a wide variety of applications such as active filters, optical modulators, ultra-fast switching devices, communication, detectors and biosensing.

References

  • A. Degiron, H. J. ((2004)). Optical transmission properties of a single subwavelength aperture in a real metal. Opt. Commun. , 239 (1), 61–66 .
  • Ahmet Ali Yanik, X. W. (2008). Extraordinary midinfrared transmission of rectangular coaxial nanoaperture arrays. Appl. Phys. Lett. , 93, 081104.
  • Alexander Belushkin, F. Y. (2018). Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray. ACS Nano , 12 (5), 4453–4461.
  • Arif E. Cetin, S. K. (2016). Quantification of Multiple Molecular Fingerprints by Dual-Resonant Perfect Absorber. Adv. Optical Mater. , 4, 1274–1280.
  • Biagioni, T. T. (2019). Semiconductor infrared plasmonics. Nanophotonics , 8 (6), 949–990.
  • Bowen Li, S. Z. (2017). Single-Nanoparticle Plasmonic Electro-optic Modulator Based on MoS2 Monolayers. ACS Nano , 11 (10), 9720–9727.
  • C. M. Soukoulis, S. L. (2007). “Physics. Negative refractive index at optical wavelengths,. Science , 315 (5808), 47-49.
  • Cameron Gilroy, S. H. (2019). Roles of Superchirality and Interference in Chiral Plasmonic Biodetection. J. Phys. Chem. C , 123 (24), 15195–15203.
  • Deepak Sood, C. C. (2017). A polarization insensitive compact ultrathin wide-angle penta-band metamaterial absorber. Journal of Electromagnetic Waves and Applications , 31 (4), 394-404.
  • Grisha Spektor, A. D. (2015). Metafocusing by a Metaspiral Plasmonic Lens. Nano Lett. , 15 (9), 5739–5743.
  • Khwanchai Tantiwanichapan, X. W. (2017). Graphene terahertz plasmons: A combined transmission spectroscopy and Raman microscopy study. ACS Photonics , 4 (8), 2011-2017.
  • Luc Duempelmann, A. L.-D. (2016). Four-Fold Color Filter Based on Plasmonic Phase Retarder. ACS Photonics , 3 (2), 190–196.
  • N. I. Landy, S. S. (2008). Perfect metamaterial absorber. Phys. Rev. Lett. , 100, 207402.
  • Palik, E. D. (1985). Handbook of Optical Constants of Solids. Orlando, FL: Academic.
  • Rana Sadaf Anwar, H. N. (2018). Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digital Communications and Networks , 4 (4), 244-257.
  • Seon-Young Rhim, G. L.-K. (2020). Using Active Surface Plasmons in a Multibit Optical Storage Device to Emulate Long‐Term Synaptic Plasticity. Physica status solidi , 217 (20), 2000354.
  • Ting Xie, Z. C. (2017). A wide-angle and polarization insensitive infrared broad band metamaterial absorber. Optics Communications , 383, 81-86.
  • Tsai, M.-W. &.-H.-Y.-c.-2. (2006). Bragg scattering of surface plasmon polaritons on extraordinary transmission through silver periodic perforated hole arrays. Applied Physics Letters. , 88, 213112.
  • Wang Xin, Z. B. (2017). Design, Fabrication, and Characterization of a Flexible Dual-Band Metamaterial Absorber. IEEE Photonics Journal , 9 (4), 1-12.
  • Yakov Galutin, E. F. (2017). Invisibility Cloaking Scheme by Evanescent Fields Distortion on Composite Plasmonic Waveguides with Si Nano-Spacer. Scientific Reports , 12076.
  • Yasa Ekşioğlu, A. E. (2018). Multi-band plasmonic platform utilizing UT-shaped graphene antenna arraysoop. Plasmonics , 13 (3), 1081-1088.
  • Zhi Hao Jiang, S. Y. (2011). Conformal Dual-Band Near-Perfectly Absorbing Mid-Infrared Metamaterial Coating. ACS Nano , 5 (6), 4641–4647.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Rafettin Aytekin 0000-0002-6986-059X

Habibe Durmaz 0000-0002-5929-861X

Publication Date August 31, 2021
Published in Issue Year 2021 Issue: 25

Cite

APA Aytekin, R., & Durmaz, H. (2021). Metamalzeme Tabanlı İki Bantlı Mükemmel Soğurucu. Avrupa Bilim Ve Teknoloji Dergisi(25), 28-33. https://doi.org/10.31590/ejosat.891996