Research Article
BibTex RIS Cite

Çok Girişli Çok Çıkışlı Sistemler için Güç Tahsisi Algoritmaları

Year 2021, Issue: 28, 444 - 452, 30.11.2021
https://doi.org/10.31590/ejosat.1005325

Abstract

Çok büyük çok girişli çok çıkışlı sistem (Massive MIMO) beşinci nesil (5G) ve ötesi kablosuz iletişim teknolojilerinin performanslarını geliştirmek için önemli bir sistem olarak hala geçerliliğini korumaktadır. Spektrum verimliliği (SE), enerji verimliliği (EE) bu performanslar arasındadır. Son zamanlarda birbirleriyle bağlantılı cihazların artması, internet of things (IoT) sistemlerin gün geçtikçe yayılması ve buna rağmen kaynakların sınırlı olmasından dolayı çeşitli performans geliştirmeleri kaçınılmaz olmuştur. Massive MIMO ile birlikte bu tür iyileştirmeleri gerçekleştirmek için çeşitli çalışmaların olduğu görülmektedir. Özellikle spektrum verimliliği ve enerji verimliliği için birçok araştırmalar mevcuttur. Çünkü enerji konusu ve bant genişliği problemi ilk olarak çözülmesi ve geliştirilmesi gereken konular arasındadır. Son yıllarda bu iki problemin çözümüne yönelik güç tahsisi algoritmalarına odaklanıldığı anlaşılmaktadır. Bu çalışmada, güç tahsisi algoritmaları hakkındaki araştırmalar incelenmiştir. Çalışmaların temel noktaları üzerinde durulmuştur. Ayrıca temel güç tahsisi algoritmaları arasında yer alacak üç farklı güç tahsisi algoritmasının birbirleri arasında kıyaslaması spektrum verimliliği açısından gerçekleştirilmiştir.

References

  • Bana, A.-S., Sanguinetti, L., Carvalho, E. De, & Popovski, P. (2019). Outage Analysis of Downlink URLLC in Massive MIMO systems with Power Allocation. 2019 53rd Asilomar Conference on Signals, Systems, and Computers, 1394–1398. https://doi.org/10.1109/IEEECONF44664.2019.9049046
  • Bashar, M., Cumanan, K., Burr, A. G., Debbah, M., & Ngo, H. Q. (2019). On the uplink max-min SINR of cell-free massive MIMO systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2019.2892463
  • Björnson, E., Hoydis, J., & Sanguinetti, L. (2017). Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Foundations and Trends® in Signal Processing, 11(3–4), 154–655. https://doi.org/10.1561/2000000093
  • Björnson, E., Larsson, E. G., & Debbah, M. (2016). Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should Be Allocated? IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2015.2488634
  • Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80. https://doi.org/10.1109/MCOM.2014.6736746
  • Chakraborty, S., Demir, O. T., Bjornson, E., & Giselsson, P. (2020). Efficient Downlink Power Allocation Algorithms for Cell-Free Massive MIMO Systems. IEEE Open Journal of the Communications Society, 2(December 2020), 168–186. https://doi.org/10.1109/ojcoms.2020.3044280
  • Chang Soon Park, & Kwang Bok Lee. (2002). Transmit power allocation for BER performance improvement in multicarrier systems. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 5, 2049–2053. https://doi.org/10.1109/PIMRC.2002.1046504
  • Chaves, R. S., Cetin, E., Lima, M. V. S., & Martins, W. A. (2020). On the Convergence of Max-Min Fairness Power Allocation in Massive MIMO Systems. IEEE Communications Letters, 24(12), 2873–2877. https://doi.org/10.1109/LCOMM.2020.3014942
  • Cheng, R. S., & Verdu, S. (1993). Gaussian multiaccess channels with ISI: capacity region and multiuser water-filling. IEEE Transactions on Information Theory, 39(3), 773–785. https://doi.org/10.1109/18.256487
  • Clerckx, B., & Claude Oestges. (2013). Mimo Wireless Networks. In MIMO Wireless Networks. Elsevier. https://doi.org/10.1016/C2010-0-66925-2
  • Dikmen, O., & Kulac, S. (2019). A new method in pilot reuse factor selection in spectrum efficient massive MIMO systems. Elektronika Ir Elektrotechnika. https://doi.org/10.5755/j01.eie.25.6.24829
  • Dikmen, O., & Kulaç, S. (2021). Investigation of Ideal Number User Terminals with Spectrum Efficiency in Next Generation Wireless Communication Systems. Traitement Du Signal, 38(1), 115–126. https://doi.org/10.18280/ts.380112
  • Duman, T. M., & Ghrayeb, A. (2007). Coding for MIMO Communication Systems. In Coding for MIMO Communication Systems. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470724347
  • Gandotra, P., & Jha, R. K. (2017). A survey on green communication and security challenges in 5G wireless communication networks. In Journal of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2017.07.002
  • Hawej, M., & Shayan, Y. R. (2019). Evaluation of Massive MU-MIMO Channel Estimation Based on Uplink Achievable-Sum Rate Criteria. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 1–5. https://doi.org/10.1109/CCECE.2019.8861846
  • Hu, B., Sun, Q., Wang, J., & Xu, C. (2014). Joint power allocation and antenna selection for energy-efficient OFDM D-MIMO systems. 2014 6th International Conference on Wireless Communications and Signal Processing, WCSP 2014. https://doi.org/10.1109/WCSP.2014.6992152
  • Ivanis, P., & Drajic, D. (2003). Combined optimal power allocation and adaptive modulation for MIMO systems with imperfect CSI. 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003., 1, 167–170. https://doi.org/10.1109/TELSKS.2003.1246208
  • Khalighi, M. A., Brossier, J.-M., Jourdain, G. V., & Raoof, K. (2001). Water filling capacity of Rayleigh MIMO channels. 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598), 1, A-155-A-158. https://doi.org/10.1109/PIMRC.2001.965411
  • Kshetrimayum, R. S. (2017). Fundamentals of MIMO Wireless Communications. In Fundamentals of MIMO Wireless Communications. https://doi.org/10.1017/9781108234993
  • Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195. https://doi.org/10.1109/MCOM.2014.6736761
  • Liu, P., Jin, S., Jiang, T., Zhang, Q., & Matthaiou, M. (2017). Pilot Power Allocation Through User Grouping in Multi-Cell Massive MIMO Systems. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2016.2645767
  • Marzetta, T. L. (2010). Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600. https://doi.org/10.1109/TWC.2010.092810.091092
  • Marzetta, T. L., Larsson, E. G., Yang, H., & Ngo, H. Q. (2016). Fundamentals of Massive MIMO. In Fundamentals of Massive MIMO. Cambridge University Press. https://doi.org/10.1017/CBO9781316799895
  • MIMO Systems, Theory and Applications. (2011). In H. Khaleghi Bizaki (Ed.), MIMO Systems, Theory and Applications. InTech. https://doi.org/10.5772/610
  • Nezamalhosseini, S. A., & Chen, L. R. (2021). Optimal power allocation for mimo underwater wireless optical communication systems using channel state information at the transmitter. IEEE Journal of Oceanic Engineering. https://doi.org/10.1109/JOE.2019.2963551
  • Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449. https://doi.org/10.1109/TCOMM.2013.020413.110848
  • Phan, K., Le, L., Vorobyov, S., & Le-Ngoc, T. (2009). Power Allocation and Admission Control in Multiuser Relay Networks via Convex Programming: Centralized and Distributed Schemes. EURASIP Journal on Wireless Communications and Networking, 2009(1), 901965. https://doi.org/10.1155/2009/901965
  • Prayongpun, N., & Raoof, K. (2007). MIMO Channel Capacity with Polarization Diversity and Power Allocation Technique. 2007 IEEE International Conference on Signal Processing and Communications, 185–188. https://doi.org/10.1109/ICSPC.2007.4728286
  • Rusek, F., Persson, D., Buon Kiong Lau, Larsson, E. G., Marzetta, T. L., & Tufvesson, F. (2013). Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Processing Magazine, 30(1), 40–60. https://doi.org/10.1109/MSP.2011.2178495
  • Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  • Tan, C. W. (2014). Wireless network optimization by perron-frobenius theory. Foundations and Trends in Networking, 9(2–3), 107–218. https://doi.org/10.1561/1300000048
  • Tan, F., Chen, H., Zhao, F., & Li, X. (2018). Energy-efficient power allocation for massive MIMO-enabled multi-way AF relay networks with channel aging. EURASIP Journal on Wireless Communications and Networking, 2018(1), 206. https://doi.org/10.1186/s13638-018-1222-2
  • Van Chien, T., Bjornson, E., & Larsson, E. G. (2016). Joint power allocation and user association optimization for massive MIMO systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2016.2583436
  • Van Chien, T., Bjornson, E., & Larsson, E. G. (2018). Joint pilot design and uplink power allocation in multi-cell massive MIMO systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2017.2787702
  • Verenzuela, D., Bjornson, E., & Matthaiou, M. (2021). Optimal Per-Antenna ADC Bit Allocation in Correlated and Cell-Free Massive MIMO. IEEE Transactions on Communications, 1–1. https://doi.org/10.1109/TCOMM.2021.3067699
  • Vucetic, B., & Yuan, J. (2003). Space-Time Coding. In Space-Time Coding. John Wiley & Sons, Ltd. https://doi.org/10.1002/047001413X
  • Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., Aggoune, H., Haas, H., Fletcher, S., & Hepsaydir, E. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130. https://doi.org/10.1109/MCOM.2014.6736752
  • Wu, Y., Liu, T., Cao, M., Li, L., & Xu, W. (2018). Pilot contamination reduction in massive MIMO systems based on pilot scheduling. EURASIP Journal on Wireless Communications and Networking, 2018(1), 21. https://doi.org/10.1186/s13638-018-1029-1
  • Wubben, D., & Lang, Y. (2008). Near-Optimum Power Allocation for Outage Restricted Distributed MIMO Multi-Hop Networks. IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference, 1–5. https://doi.org/10.1109/GLOCOM.2008.ECP.862
  • Xi Zhang, & Ottersten, B. (2003). Power allocation and bit loading for spatial multiplexing in MIMO systems. 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03)., 5, V-53–56. https://doi.org/10.1109/ICASSP.2003.1199866
  • Yang, H., & Marzetta, T. L. (2017). Massive MIMO with Max-Min Power Control in Line-of-Sight Propagation Environment. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2017.2725262
  • Yoshimoto, A., & Hattori, T. (2007). Area Coverage of a Multi-Link MIMO System with Water Filling Power Allocation Strategy. 2007 IEEE 66th Vehicular Technology Conference, 1137–1141. https://doi.org/10.1109/VETECF.2007.246

Power Allocation Algorithms for Massive MIMO System

Year 2021, Issue: 28, 444 - 452, 30.11.2021
https://doi.org/10.31590/ejosat.1005325

Abstract

Massive multiple-input multiple-output (MIMO) is still valid as an important system to increase performance of fifth generation (5G) and beyond wireless communication technologies. Spectrum efficiency (SE), high data rate and energy efficiency (EE) are among these performances. Recently, due to the increase in interconnected devices, the spread of internet of things (IoT) systems and the limited resources, various performance improvements have become inevitable. It is seen that there are various studies to realize such improvements with Massive MIMO. There are many researches especially for spectrum efficiency and energy efficiency. Because issue of energy and bandwidth problem are among the issues that need to be solved and developed first. In recent years, it is understood that power allocation algorithms have been focused on solving these two problems. In this study, researches on power allocation algorithms for MIMO systems are examined. The main points of the studies are emphasized. In addition, the comparison of three different power allocation algorithms, which will be among the basic power allocation algorithms, are carried out in terms of spectrum efficiency.

References

  • Bana, A.-S., Sanguinetti, L., Carvalho, E. De, & Popovski, P. (2019). Outage Analysis of Downlink URLLC in Massive MIMO systems with Power Allocation. 2019 53rd Asilomar Conference on Signals, Systems, and Computers, 1394–1398. https://doi.org/10.1109/IEEECONF44664.2019.9049046
  • Bashar, M., Cumanan, K., Burr, A. G., Debbah, M., & Ngo, H. Q. (2019). On the uplink max-min SINR of cell-free massive MIMO systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2019.2892463
  • Björnson, E., Hoydis, J., & Sanguinetti, L. (2017). Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Foundations and Trends® in Signal Processing, 11(3–4), 154–655. https://doi.org/10.1561/2000000093
  • Björnson, E., Larsson, E. G., & Debbah, M. (2016). Massive MIMO for Maximal Spectral Efficiency: How Many Users and Pilots Should Be Allocated? IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2015.2488634
  • Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80. https://doi.org/10.1109/MCOM.2014.6736746
  • Chakraborty, S., Demir, O. T., Bjornson, E., & Giselsson, P. (2020). Efficient Downlink Power Allocation Algorithms for Cell-Free Massive MIMO Systems. IEEE Open Journal of the Communications Society, 2(December 2020), 168–186. https://doi.org/10.1109/ojcoms.2020.3044280
  • Chang Soon Park, & Kwang Bok Lee. (2002). Transmit power allocation for BER performance improvement in multicarrier systems. The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 5, 2049–2053. https://doi.org/10.1109/PIMRC.2002.1046504
  • Chaves, R. S., Cetin, E., Lima, M. V. S., & Martins, W. A. (2020). On the Convergence of Max-Min Fairness Power Allocation in Massive MIMO Systems. IEEE Communications Letters, 24(12), 2873–2877. https://doi.org/10.1109/LCOMM.2020.3014942
  • Cheng, R. S., & Verdu, S. (1993). Gaussian multiaccess channels with ISI: capacity region and multiuser water-filling. IEEE Transactions on Information Theory, 39(3), 773–785. https://doi.org/10.1109/18.256487
  • Clerckx, B., & Claude Oestges. (2013). Mimo Wireless Networks. In MIMO Wireless Networks. Elsevier. https://doi.org/10.1016/C2010-0-66925-2
  • Dikmen, O., & Kulac, S. (2019). A new method in pilot reuse factor selection in spectrum efficient massive MIMO systems. Elektronika Ir Elektrotechnika. https://doi.org/10.5755/j01.eie.25.6.24829
  • Dikmen, O., & Kulaç, S. (2021). Investigation of Ideal Number User Terminals with Spectrum Efficiency in Next Generation Wireless Communication Systems. Traitement Du Signal, 38(1), 115–126. https://doi.org/10.18280/ts.380112
  • Duman, T. M., & Ghrayeb, A. (2007). Coding for MIMO Communication Systems. In Coding for MIMO Communication Systems. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470724347
  • Gandotra, P., & Jha, R. K. (2017). A survey on green communication and security challenges in 5G wireless communication networks. In Journal of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2017.07.002
  • Hawej, M., & Shayan, Y. R. (2019). Evaluation of Massive MU-MIMO Channel Estimation Based on Uplink Achievable-Sum Rate Criteria. 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 1–5. https://doi.org/10.1109/CCECE.2019.8861846
  • Hu, B., Sun, Q., Wang, J., & Xu, C. (2014). Joint power allocation and antenna selection for energy-efficient OFDM D-MIMO systems. 2014 6th International Conference on Wireless Communications and Signal Processing, WCSP 2014. https://doi.org/10.1109/WCSP.2014.6992152
  • Ivanis, P., & Drajic, D. (2003). Combined optimal power allocation and adaptive modulation for MIMO systems with imperfect CSI. 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003., 1, 167–170. https://doi.org/10.1109/TELSKS.2003.1246208
  • Khalighi, M. A., Brossier, J.-M., Jourdain, G. V., & Raoof, K. (2001). Water filling capacity of Rayleigh MIMO channels. 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598), 1, A-155-A-158. https://doi.org/10.1109/PIMRC.2001.965411
  • Kshetrimayum, R. S. (2017). Fundamentals of MIMO Wireless Communications. In Fundamentals of MIMO Wireless Communications. https://doi.org/10.1017/9781108234993
  • Larsson, E., Edfors, O., Tufvesson, F., & Marzetta, T. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195. https://doi.org/10.1109/MCOM.2014.6736761
  • Liu, P., Jin, S., Jiang, T., Zhang, Q., & Matthaiou, M. (2017). Pilot Power Allocation Through User Grouping in Multi-Cell Massive MIMO Systems. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2016.2645767
  • Marzetta, T. L. (2010). Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600. https://doi.org/10.1109/TWC.2010.092810.091092
  • Marzetta, T. L., Larsson, E. G., Yang, H., & Ngo, H. Q. (2016). Fundamentals of Massive MIMO. In Fundamentals of Massive MIMO. Cambridge University Press. https://doi.org/10.1017/CBO9781316799895
  • MIMO Systems, Theory and Applications. (2011). In H. Khaleghi Bizaki (Ed.), MIMO Systems, Theory and Applications. InTech. https://doi.org/10.5772/610
  • Nezamalhosseini, S. A., & Chen, L. R. (2021). Optimal power allocation for mimo underwater wireless optical communication systems using channel state information at the transmitter. IEEE Journal of Oceanic Engineering. https://doi.org/10.1109/JOE.2019.2963551
  • Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61(4), 1436–1449. https://doi.org/10.1109/TCOMM.2013.020413.110848
  • Phan, K., Le, L., Vorobyov, S., & Le-Ngoc, T. (2009). Power Allocation and Admission Control in Multiuser Relay Networks via Convex Programming: Centralized and Distributed Schemes. EURASIP Journal on Wireless Communications and Networking, 2009(1), 901965. https://doi.org/10.1155/2009/901965
  • Prayongpun, N., & Raoof, K. (2007). MIMO Channel Capacity with Polarization Diversity and Power Allocation Technique. 2007 IEEE International Conference on Signal Processing and Communications, 185–188. https://doi.org/10.1109/ICSPC.2007.4728286
  • Rusek, F., Persson, D., Buon Kiong Lau, Larsson, E. G., Marzetta, T. L., & Tufvesson, F. (2013). Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Processing Magazine, 30(1), 40–60. https://doi.org/10.1109/MSP.2011.2178495
  • Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  • Tan, C. W. (2014). Wireless network optimization by perron-frobenius theory. Foundations and Trends in Networking, 9(2–3), 107–218. https://doi.org/10.1561/1300000048
  • Tan, F., Chen, H., Zhao, F., & Li, X. (2018). Energy-efficient power allocation for massive MIMO-enabled multi-way AF relay networks with channel aging. EURASIP Journal on Wireless Communications and Networking, 2018(1), 206. https://doi.org/10.1186/s13638-018-1222-2
  • Van Chien, T., Bjornson, E., & Larsson, E. G. (2016). Joint power allocation and user association optimization for massive MIMO systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2016.2583436
  • Van Chien, T., Bjornson, E., & Larsson, E. G. (2018). Joint pilot design and uplink power allocation in multi-cell massive MIMO systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2017.2787702
  • Verenzuela, D., Bjornson, E., & Matthaiou, M. (2021). Optimal Per-Antenna ADC Bit Allocation in Correlated and Cell-Free Massive MIMO. IEEE Transactions on Communications, 1–1. https://doi.org/10.1109/TCOMM.2021.3067699
  • Vucetic, B., & Yuan, J. (2003). Space-Time Coding. In Space-Time Coding. John Wiley & Sons, Ltd. https://doi.org/10.1002/047001413X
  • Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., Aggoune, H., Haas, H., Fletcher, S., & Hepsaydir, E. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130. https://doi.org/10.1109/MCOM.2014.6736752
  • Wu, Y., Liu, T., Cao, M., Li, L., & Xu, W. (2018). Pilot contamination reduction in massive MIMO systems based on pilot scheduling. EURASIP Journal on Wireless Communications and Networking, 2018(1), 21. https://doi.org/10.1186/s13638-018-1029-1
  • Wubben, D., & Lang, Y. (2008). Near-Optimum Power Allocation for Outage Restricted Distributed MIMO Multi-Hop Networks. IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference, 1–5. https://doi.org/10.1109/GLOCOM.2008.ECP.862
  • Xi Zhang, & Ottersten, B. (2003). Power allocation and bit loading for spatial multiplexing in MIMO systems. 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03)., 5, V-53–56. https://doi.org/10.1109/ICASSP.2003.1199866
  • Yang, H., & Marzetta, T. L. (2017). Massive MIMO with Max-Min Power Control in Line-of-Sight Propagation Environment. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2017.2725262
  • Yoshimoto, A., & Hattori, T. (2007). Area Coverage of a Multi-Link MIMO System with Water Filling Power Allocation Strategy. 2007 IEEE 66th Vehicular Technology Conference, 1137–1141. https://doi.org/10.1109/VETECF.2007.246
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Osman Dikmen 0000-0001-8276-153X

Selman Kulac 0000-0002-7737-1569

Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 28

Cite

APA Dikmen, O., & Kulac, S. (2021). Power Allocation Algorithms for Massive MIMO System. Avrupa Bilim Ve Teknoloji Dergisi(28), 444-452. https://doi.org/10.31590/ejosat.1005325