Research Article
BibTex RIS Cite

Modifiye Hummers Yöntemi ile Elde Edilen Grafen Oksit Sentezleri İçin: Kısım 4, Raman Spektroskopisi Analizi

Year 2021, Issue: 28, 993 - 997, 30.11.2021
https://doi.org/10.31590/ejosat.1012390

Abstract

Bu çalışmada, Raman Spektroskopisi analizi ile Hummers yöntemindeki sodyum nitrat konsantrasyonunun değiştirilmesiyle elde edilen sentezler sonucunda grafen okside dönüşümü ve yapısal özelliklerinin değişimi incelenmiştir. Grafitin Raman spektrumunda; 1573,7 cm−1'de G (%32,3 pik alanlı) ve 2692,3 cm−1'de 2D (%54,1 pik alanlı) karakteristik bantları görülmüştür. Grafen oksit sentezlerinin Raman spektrumlarında ise sırasıyla; 1582,1 ve 1591,2 cm-1’de G bandı (~%23 pik alanlı) ve 1352,3 ve 1355,8 cm-1'de bir D bandı (~%51 pik alanlı) olmak üzere iki belirgin pik gözlenmiştir. Buna ilaveten sentez numunelerinde ~2928-2947 cm-1’de yeni bir D+D’ bandı (~%12 pik alanlı) ortaya çıkmış ve grafitte 3228 cm-1 'deki 2D’ bandı ise kaybolmuştur. Kimyasal oksidasyondan sonra, grafitteki D bandı pik alanının %10,8 iken grafen oksit sentezlerinde ~%51’e çıkmış ve grafitteki 2D bandı pik alanının ~%54 iken GO sentezlerinde ~%15’e azalmıştır. D ve G bantlarının şiddet oranı (ID/IG) grafitten grafen okside geçişte, ~0,73’den ~1,00’a yükselmiştir. Bunun yanı sıra D, G ve 2D piklerinin maksimum pik yüksekliklerinin yarıya düştüğü genişlik değerleri sırasıyla; grafitte yaklaşık 42, 25 ve73 cm-1 iken sentez numunelerinde ~175-187, ~79-83 ve ~300-500 cm-1 aralığında değişmiştir.
Bütün sonuçlar ışığında, bu şartlarda elde edilen sentezlerin, farklı özelliklere sahip grafen oksit örnekleri oldukları ve literatür ile uyum içerisinde oldukları söylenebilir.

Supporting Institution

Atatürk Üniversitesi BAPSİS

Project Number

6814

Thanks

Bu çalışma, Atatürk Üniversitesi BAPSİS Birimi tarafından Temel Araştırma Projesi olarak desteklenmiştir.

References

  • Moosa, A., and Abed, M. (2021). Graphene preparation and grapfite exfoliation. Turkish journal of Chemistry, 45(3), 493-519.
  • Dresselhaus, G., Dresselhaus, M. S., & Saito, R. (1998). Physical properties of carbon nanotubes. World scientific.
  • Tiyek, İ., Dönmez, U., Yıldırım, B., Alma, M. H., Ersoy, M. S., & Karataş, Ş. (2016). Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. Sakarya University Journal of Science, 20(2), 349-357.
  • Paulchamy, B., Arthi, G., & Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 6(1), 1.
  • Brisebois, P. P., & Siaj, M. (2020). Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 8(5), 1517-1547.
  • Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
  • Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666-686.
  • Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
  • Shamaila, S., Sajjad, A. K. L., & Iqbal, A. (2016). Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 294, 458-477.
  • Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
  • Lavin-Lopez, M. D. P., Romero, A., Garrido, J., Sanchez-Silva, L., & Valverde, J. L. (2016). Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Industrial & Engineering Chemistry Research, 55(50), 12836-12847.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
  • Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., ... & Gao, C. (2015). An iron-based green approach to 1-h production of single-layer graphene oxide. Nature communications, 6(1), 1-9.
  • Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 8(4), 235-246.
  • Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., & Eklund, P. C. (2006). Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano letters, 6(12), 2667-2673.
  • Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B, 61(20), 14095.
  • Schönfelder, R., Rümmeli, M. H., Gruner, W., Löffler, M., Acker, J., Hoffmann, V., ... & Pichler, T. (2007). Purification-induced sidewall functionalization of magnetically pure single-walled carbon nanotubes. Nanotechnology, 18(37), 375601.
  • Bokobza, L., Bruneel, J. L., & Couzi, M. (2015). Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C—Journal of Carbon Research, 1(1), 77-94.
  • Tuinstra, F., & Koenig, J. L. (1970). Raman spectrum of graphite. The Journal of chemical physics, 53(3), 1126-1130.
  • Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38-49.
  • Aliyev, E., Filiz, V., Khan, M. M., Lee, Y. J., Abetz, C., & Abetz, V. (2019). Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials, 9(8), 1180.

For Graphene Oxide Synthesis Obtained by Modified Hummers Method: Part 4, Raman Spectroscopy Analysis

Year 2021, Issue: 28, 993 - 997, 30.11.2021
https://doi.org/10.31590/ejosat.1012390

Abstract

In this study, the conversion of graphene to oxide and the change of its structural properties as a result of the syntheses obtained by changing the sodium nitrate concentration in the Hummers method with Raman Spectroscopy analysis were investigated. In the Raman spectrum of graphite, characteristic bands of G (32.3% peak area) and 2D (54.1% peak area) were observed at 1573,7 cm-1 and 2692,3 cm-1. In the Raman spectra of graphene oxide syntheses, respectively; two distinct peaks were observed, a G band (~23% peak area) at 1582,1-1591,2 cm-1 and a D band (~51% peak area) at 1352,3 -1355,8 cm-1. In addition, a new D+D' band (~12% peak area) appeared in the synthesis samples at ~2928-2947 cm-1 and the 2D' band at 3228 cm-1 in graphite disappeared. After chemical oxidation, in graphene oxide syntheses it increased to ~51%, while the peak area of D band in graphite was 10.8% and in graphene oxide syntheses it decreased to ~15% while the peak area of 2D band in graphite was ~54%. The intensity ratio (ID/IG) of the D and G bands increased from ~0,73 to ~1,00 during the transition from graphite to graphene oxide. In addition, the width values at which the maximum peak heights of the D, G and 2D peaks were varied in the range of ~175-187, ~79-83 and ~300-500 cm-1 in the synthesis samples, while in graphite they were about 42, 25 and 73 cm-1, respectively. In the light of all the results, it can be said that the syntheses obtained under these conditions are graphene oxide samples with different properties and are in agreement with the literature.

Project Number

6814

References

  • Moosa, A., and Abed, M. (2021). Graphene preparation and grapfite exfoliation. Turkish journal of Chemistry, 45(3), 493-519.
  • Dresselhaus, G., Dresselhaus, M. S., & Saito, R. (1998). Physical properties of carbon nanotubes. World scientific.
  • Tiyek, İ., Dönmez, U., Yıldırım, B., Alma, M. H., Ersoy, M. S., & Karataş, Ş. (2016). Kimyasal yöntem ile indirgenmiş grafen oksit sentezi ve karakterizasyonu. Sakarya University Journal of Science, 20(2), 349-357.
  • Paulchamy, B., Arthi, G., & Lignesh, B. D. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. J Nanomed Nanotechnol, 6(1), 1.
  • Brisebois, P. P., & Siaj, M. (2020). Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. Journal of Materials Chemistry C, 8(5), 1517-1547.
  • Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109, 207-210.
  • Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chemical Society Reviews, 41(2), 666-686.
  • Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
  • Shamaila, S., Sajjad, A. K. L., & Iqbal, A. (2016). Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 294, 458-477.
  • Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339.
  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical society reviews, 39(1), 228-240.
  • Lavin-Lopez, M. D. P., Romero, A., Garrido, J., Sanchez-Silva, L., & Valverde, J. L. (2016). Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Industrial & Engineering Chemistry Research, 55(50), 12836-12847.
  • Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS nano, 4(8), 4806-4814.
  • Peng, L., Xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., ... & Gao, C. (2015). An iron-based green approach to 1-h production of single-layer graphene oxide. Nature communications, 6(1), 1-9.
  • Ferrari, A. C., & Basko, D. M. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature nanotechnology, 8(4), 235-246.
  • Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., & Eklund, P. C. (2006). Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano letters, 6(12), 2667-2673.
  • Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B, 61(20), 14095.
  • Schönfelder, R., Rümmeli, M. H., Gruner, W., Löffler, M., Acker, J., Hoffmann, V., ... & Pichler, T. (2007). Purification-induced sidewall functionalization of magnetically pure single-walled carbon nanotubes. Nanotechnology, 18(37), 375601.
  • Bokobza, L., Bruneel, J. L., & Couzi, M. (2015). Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C—Journal of Carbon Research, 1(1), 77-94.
  • Tuinstra, F., & Koenig, J. L. (1970). Raman spectrum of graphite. The Journal of chemical physics, 53(3), 1126-1130.
  • Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38-49.
  • Aliyev, E., Filiz, V., Khan, M. M., Lee, Y. J., Abetz, C., & Abetz, V. (2019). Structural characterization of graphene oxide: Surface functional groups and fractionated oxidative debris. Nanomaterials, 9(8), 1180.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ömer Laçin 0000-0002-5276-3056

Bünyamin Dönmez 0000-0002-7680-0755

Project Number 6814
Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 28

Cite

APA Laçin, Ö., & Dönmez, B. (2021). Modifiye Hummers Yöntemi ile Elde Edilen Grafen Oksit Sentezleri İçin: Kısım 4, Raman Spektroskopisi Analizi. Avrupa Bilim Ve Teknoloji Dergisi(28), 993-997. https://doi.org/10.31590/ejosat.1012390