Research Article
BibTex RIS Cite

COVID-19 Pandemisinde Tıbbi Atıklar için Yer Seçim Kriterlerinin Değerlendirilmesi

Year 2021, Issue: 28, 63 - 69, 30.11.2021
https://doi.org/10.31590/ejosat.984857

Abstract

COVID-19 virüsü tüm dünyayı etkilemiş ve pandemi ilan edilmesine neden olmuştur. Virüsün yayılmasını önlemek için maske ve dezenfektan gibi tıbbi ürünlerin kullanımı teşvik edilmiş ve hatta bazı yerlerde zorunlu hale getirilmiştir. Bu durum, kullanılan tıbbi ürünlerin atıklarını halk sağlığı için bir tehdit haline getirmektedir. Virüs içerme riski nedeniyle kullanılmış tıbbi ürünlerin bertarafından önce nerede toplanacağı önemli bir karar haline gelmiştir. Yer seçimi yapılırken göz önünde bulundurulması gereken birçok kriter bulunabilir. Bu çalışma, Türkiye'de tıbbi ürünler için bertaraf işlemi öncesi geçici toplama yeri seçimindeki kriterlerin değerlendirilmesini içermektedir. Bu yerlerin seçiminde kullanılmak üzere on değerlendirme kriteri belirlenmiştir. Kriterlerin ağırlıkları, bir çok kriterli bir karar verme yöntemi olan bulanık PIPRECIA yöntemi kullanılarak hesaplanmıştır. Elde edilen sonuçlara göre en önemli değerlendirme kriterinin yerleşim alanlarına uzaklık olduğu sonucuna varılmıştır. Bu çalışmanın sonuçlarının tıbbi atık yönetimine katkı sağlaması amaçlanmaktadır.

References

  • Blagojević, A., Stević, Ž., Marinković, D., Kasalica, S., & Rajilić, S. (2020). A novel entropy-fuzzy PIPRECIA-DEA model for safety evaluation of railway traffic. Symmetry, 12(9), 1479. doi: 10.3390/sym12091479
  • Boyacı, A. Ç., & Şişman, A. (2021). Pandemic hospital site selection: a GIS-based MCDM approach employing Pythagorean fuzzy sets. Environmental Science and Pollution Research, 1-13. doi: 10.1007/s11356-021-15703-7
  • Chen, C. R., Huang, C. C., & Tsuei, H. J. (2014). A hybrid MCDM model for improving GIS-based solar farms site selection. International Journal of Photoenergy, 2014. doi: 10.1155/2014/925370
  • Crespo, C., Ibarz, G., Sáenz, C., Gonzalez, P., & Roche, S. (2021). Study of Recycling Potential of FFP2 Face Masks and Characterization of the Plastic Mix-Material Obtained. A Way of Reducing Waste in Times of Covid-19. Waste and Biomass Valorization, 1-10. https://doi.org/10.1007/s12649-021-01476-0
  • Çakır, E. (2021). Küresel bulanık kümeler ile güvenilirlik analizi. Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 230-239. doi: 10.21923/jesd.764492d
  • Çakır, E., Taş, M. A., & Ulukan, Z. Spherical bipolar fuzzy weighted multi-facility location modeling for mobile COVID-19 vaccination clinics. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-14. doi: 10.3233/JIFS-219189
  • Đalić, I., Stević, Ž., Karamasa, C., & Puška, A. (2020). A novel integrated fuzzy PIPRECIA–interval rough SAW model: Green supplier selection. Decision Making: Applications in Management and Engineering, 3(1), 126-145. doi: 10.31181/dmame2003114d
  • Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection. SpringerPlus, 5(1), 1-30. doi: 10.1186/s40064-016-2131-7
  • Isalou, A. A., Zamani, V., Shahmoradi, B., & Alizadeh, H. (2013). Landfill site selection using integrated fuzzy logic and analytic network process (F-ANP). Environmental Earth Sciences, 68(6), 1745-1755. doi: 10.1007/s12665-012-1865-y
  • Kahraman, C., Keshavarz Ghorabaee, M., Zavadskas, E. K., Cevik Onar, S., Yazdani, M., & Oztaysi, B. (2017). Intuitionistic fuzzy EDAS method: an application to solid waste disposal site selection. Journal of Environmental Engineering and Landscape Management, 25(1), 1-12. doi: 10.3846/16486897.2017.1281139
  • Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management, 11(2), 243-258. doi: 10.3846/jbem.2010.12
  • Kutlu Gündoğdu, F., & Kahraman, C. (2019). A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. Journal of Intelligent & Fuzzy Systems, 37(1), 1197-1211. doi: 10.3233/JIFS-182651
  • Lin, M., Huang, C., & Xu, Z. (2020). MULTIMOORA based MCDM model for site selection of car sharing station under picture fuzzy environment. Sustainable cities and society, 53, 101873. doi: 10.1016/j.scs.2019.101873
  • Liu, H. C., You, J. X., Fan, X. J., & Chen, Y. Z. (2014). Site selection in waste management by the VIKOR method using linguistic assessment. Applied Soft Computing, 21, 453-461. doi: 10.1016/j.asoc.2014.04.004
  • Malemnganbi, R., & Shimray, B. A. (2020). Solar Power Plant Site Selection: A Systematic Literature Review on MCDM Techniques Used. Electronic Systems and Intelligent Computing, 37-48. doi: 10.1007/978-981-15-7031-5_5
  • Mihajlović, J., Rajković, P., Petrović, G., & Ćirić, D. (2019). The selection of the logistics distribution center location based on MCDM methodology in southern and eastern region in Serbia. Operational Research in Engineering Sciences: Theory and Applications, 2(2), 72-85. doi: 10.31181/oresta190247m
  • Moghaddas, N. H., & Namaghi, H. H. (2011). Hazardous waste landfill site selection in Khorasan Razavi province, northeastern Iran. Arabian journal of geosciences, 4(1), 103-113. doi: 10.1007/s12517-009-0083-8
  • Rahimi, S., Hafezalkotob, A., Monavari, S. M., Hafezalkotob, A., & Rahimi, R. (2020). Sustainable landfill site selection for municipal solid waste based on a hybrid decision-making approach: Fuzzy group BWM-MULTIMOORA-GIS. Journal of Cleaner Production, 248, 119186. doi: 10.1016/j.jclepro.2019.119186
  • Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., & García-Cascales, M. S. (2013). Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renewable and sustainable energy reviews, 24, 544-556. doi: 10.1016/j.rser.2013.03.019
  • Sangkham, S. (2020). Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Studies in Chemical and Environmental Engineering, 2, 100052. https://doi.org/10.1016/j.cscee.2020.100052
  • Senvar, O., Otay, I., & Bolturk, E. (2016). Hospital site selection via hesitant fuzzy TOPSIS. IFAC-PapersOnLine, 49(12), 1140-1145. doi: 10.1016/j.ifacol.2016.07.656
  • Shao, M., Han, Z., Sun, J., Xiao, C., Zhang, S., & Zhao, Y. (2020). A review of multi-criteria decision making applications for renewable energy site selection. Renewable Energy, 157, 377-403. doi: 10.1016/j.renene.2020.04.137
  • Sharifi, M. A., & Retsios, V. (2004). Site selection for waste disposal through spatial multiple criteria decision analysis. Journal of telecommunications and information technology, 28-38.
  • Sharma, H. B., Vanapalli, K. R., Cheela, V. S., Ranjan, V. P., Jaglan, A. K., Dubey, B., ... & Bhattacharya, J. (2020). Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, 162, 105052. doi: 10.1016/j.resconrec.2020.105052
  • Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of advanced research, 24, 91. https://doi.org/ 10.1016/j.jare.2020.03.005
  • Shi, Q., Ren, H., Ma, X., & Xiao, Y. (2019). Site selection of construction waste recycling plant. Journal of cleaner production, 227, 532-542. doi: 10.1016/j.jclepro.2019.04.252
  • South China Morning Post (SCMP) (2020). Coronavirus leaves China with mountains of medical waste. Accessed on: 10.07.2021. https://www.scmp.com/news/china/society/article/3074722/coronavirus-leaves-china-mountains-medical-waste
  • Stanujkic, D., Zavadskas, E. K., Karabasevic, D., Smarandache, F., & Turskis, Z. (2017). The use of the pivot pairwise relative criteria importance assessment method for determining the weights of criteria. Romanian Journal of Economic Forecasting, 20, 116-133.
  • Stević, Ž., Stjepanović, Ž., Božičković, Z., Das, D. K., & Stanujkić, D. (2018). Assessment of conditions for implementing information technology in a warehouse system: A novel fuzzy piprecia method. Symmetry, 10(11), 586. doi: 10.3390/sym10110586
  • Şener, Ş., Sener, E., & Karagüzel, R. (2011). Solid waste disposal site selection with GIS and AHP methodology: a case study in Senirkent–Uluborlu (Isparta) Basin, Turkey. Environmental monitoring and assessment, 173(1), 533-554. doi: 10.1007/s10661-010-1403-x
  • Taş, M. A. & Çakır, E., (2021). Green Supplier Selection Using Game Theory Based on Fuzzy SWARA. Sakarya University Journal of Science (Preprint), 1-14. doi: 10.16984/saufenbilder.877919
  • Tomašević, M., Lapuh, L., Stević, Ž., Stanujkić, D., & Karabašević, D. (2020). Evaluation of criteria for the implementation of high-performance computing (HPC) in Danube Region countries using fuzzy PIPRECIA method. Sustainability, 12(7), 3017. doi: 10.3390/su12073017
  • Torkayesh, A. E., Zolfani, S. H., Kahvand, M., & Khazaelpour, P. (2021). Landfill location selection for healthcare waste of urban areas using hybrid BWM-grey MARCOS model based on GIS. Sustainable Cities and Society, 67, 102712. 10.1016/j.scs.2021.102712
  • Tseng, M. L. (2011). Using a hybrid MCDM model to evaluate firm environmental knowledge management in uncertainty. Applied Soft Computing, 11(1), 1340-1352. doi: 10.1016/j.asoc.2010.04.006
  • U. S. Food & Drug Administration (FDA) (2020). Q&A for Consumers | Hand Sanitizers and COVID-19. Accessed on: 15.07.2021. https://www.fda.gov/drugs/information-drug-class/qa-consumers-hand-sanitizers-and-covid-19
  • Vahidnia, M. H., Alesheikh, A. A., & Alimohammadi, A. (2009). Hospital site selection using fuzzy AHP and its derivatives. Journal of environmental management, 90(10), 3048-3056. doi: 10.1016/j.jenvman.2009.04.010
  • Vesković, S., Milinković, S., Abramović, B., & Ljubaj, I. (2020). Determining criteria significance in selecting reach stackers by applying the fuzzy PIPRECIA method. Operational Research in Engineering Sciences: Theory and Applications, 3(1), 72-88. doi: 10.31181/oresta2001072v
  • World Health Organization (WHO) (2021). COVID-19 advice for the public: Getting vaccinated. Accessed on: 01.08.2021 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice
  • Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353. doi: 10.1016/S0019-9958(65)90241-X
  • Żak, J., & Węgliński, S. (2014). The selection of the logistics center location based on MCDM/A methodology. Transportation Research Procedia, 3, 555-564. doi: 10.1016/j.trpro.2014.10.034

Assessment of Site Selection Criteria for Medical Waste during COVID-19 Pandemic

Year 2021, Issue: 28, 63 - 69, 30.11.2021
https://doi.org/10.31590/ejosat.984857

Abstract

The COVID-19 virus has affected the whole world, causing it to be declared a pandemic. To prevent the spread of the virus, the use of medical products such as masks and disinfectants was encouraged and even mandatory in some places. This situation makes the waste of medical products used a threat to public health. It becomes an important decision where to depot the used medical products before disposal due to the risk of containing the virus. There are many criteria to consider during the selection of a site. This study includes the evaluation of criteria for the selection of pre-disposal temporary landfill site for medicinal products in Turkey. Eight criteria were determined to be used in the selection of these sites. The weights of the criteria were calculated using the fuzzy Pivot Pairwise Relative Criteria Importance Assessment (PIPRECIA) method, which is a multi-criteria decision making method. According to the results, it was concluded that the most important evaluation criterion was distance to residential areas. The results of this study are aimed to contribute to the management of medical waste.

References

  • Blagojević, A., Stević, Ž., Marinković, D., Kasalica, S., & Rajilić, S. (2020). A novel entropy-fuzzy PIPRECIA-DEA model for safety evaluation of railway traffic. Symmetry, 12(9), 1479. doi: 10.3390/sym12091479
  • Boyacı, A. Ç., & Şişman, A. (2021). Pandemic hospital site selection: a GIS-based MCDM approach employing Pythagorean fuzzy sets. Environmental Science and Pollution Research, 1-13. doi: 10.1007/s11356-021-15703-7
  • Chen, C. R., Huang, C. C., & Tsuei, H. J. (2014). A hybrid MCDM model for improving GIS-based solar farms site selection. International Journal of Photoenergy, 2014. doi: 10.1155/2014/925370
  • Crespo, C., Ibarz, G., Sáenz, C., Gonzalez, P., & Roche, S. (2021). Study of Recycling Potential of FFP2 Face Masks and Characterization of the Plastic Mix-Material Obtained. A Way of Reducing Waste in Times of Covid-19. Waste and Biomass Valorization, 1-10. https://doi.org/10.1007/s12649-021-01476-0
  • Çakır, E. (2021). Küresel bulanık kümeler ile güvenilirlik analizi. Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 230-239. doi: 10.21923/jesd.764492d
  • Çakır, E., Taş, M. A., & Ulukan, Z. Spherical bipolar fuzzy weighted multi-facility location modeling for mobile COVID-19 vaccination clinics. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-14. doi: 10.3233/JIFS-219189
  • Đalić, I., Stević, Ž., Karamasa, C., & Puška, A. (2020). A novel integrated fuzzy PIPRECIA–interval rough SAW model: Green supplier selection. Decision Making: Applications in Management and Engineering, 3(1), 126-145. doi: 10.31181/dmame2003114d
  • Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection. SpringerPlus, 5(1), 1-30. doi: 10.1186/s40064-016-2131-7
  • Isalou, A. A., Zamani, V., Shahmoradi, B., & Alizadeh, H. (2013). Landfill site selection using integrated fuzzy logic and analytic network process (F-ANP). Environmental Earth Sciences, 68(6), 1745-1755. doi: 10.1007/s12665-012-1865-y
  • Kahraman, C., Keshavarz Ghorabaee, M., Zavadskas, E. K., Cevik Onar, S., Yazdani, M., & Oztaysi, B. (2017). Intuitionistic fuzzy EDAS method: an application to solid waste disposal site selection. Journal of Environmental Engineering and Landscape Management, 25(1), 1-12. doi: 10.3846/16486897.2017.1281139
  • Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management, 11(2), 243-258. doi: 10.3846/jbem.2010.12
  • Kutlu Gündoğdu, F., & Kahraman, C. (2019). A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. Journal of Intelligent & Fuzzy Systems, 37(1), 1197-1211. doi: 10.3233/JIFS-182651
  • Lin, M., Huang, C., & Xu, Z. (2020). MULTIMOORA based MCDM model for site selection of car sharing station under picture fuzzy environment. Sustainable cities and society, 53, 101873. doi: 10.1016/j.scs.2019.101873
  • Liu, H. C., You, J. X., Fan, X. J., & Chen, Y. Z. (2014). Site selection in waste management by the VIKOR method using linguistic assessment. Applied Soft Computing, 21, 453-461. doi: 10.1016/j.asoc.2014.04.004
  • Malemnganbi, R., & Shimray, B. A. (2020). Solar Power Plant Site Selection: A Systematic Literature Review on MCDM Techniques Used. Electronic Systems and Intelligent Computing, 37-48. doi: 10.1007/978-981-15-7031-5_5
  • Mihajlović, J., Rajković, P., Petrović, G., & Ćirić, D. (2019). The selection of the logistics distribution center location based on MCDM methodology in southern and eastern region in Serbia. Operational Research in Engineering Sciences: Theory and Applications, 2(2), 72-85. doi: 10.31181/oresta190247m
  • Moghaddas, N. H., & Namaghi, H. H. (2011). Hazardous waste landfill site selection in Khorasan Razavi province, northeastern Iran. Arabian journal of geosciences, 4(1), 103-113. doi: 10.1007/s12517-009-0083-8
  • Rahimi, S., Hafezalkotob, A., Monavari, S. M., Hafezalkotob, A., & Rahimi, R. (2020). Sustainable landfill site selection for municipal solid waste based on a hybrid decision-making approach: Fuzzy group BWM-MULTIMOORA-GIS. Journal of Cleaner Production, 248, 119186. doi: 10.1016/j.jclepro.2019.119186
  • Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., & García-Cascales, M. S. (2013). Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain. Renewable and sustainable energy reviews, 24, 544-556. doi: 10.1016/j.rser.2013.03.019
  • Sangkham, S. (2020). Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Studies in Chemical and Environmental Engineering, 2, 100052. https://doi.org/10.1016/j.cscee.2020.100052
  • Senvar, O., Otay, I., & Bolturk, E. (2016). Hospital site selection via hesitant fuzzy TOPSIS. IFAC-PapersOnLine, 49(12), 1140-1145. doi: 10.1016/j.ifacol.2016.07.656
  • Shao, M., Han, Z., Sun, J., Xiao, C., Zhang, S., & Zhao, Y. (2020). A review of multi-criteria decision making applications for renewable energy site selection. Renewable Energy, 157, 377-403. doi: 10.1016/j.renene.2020.04.137
  • Sharifi, M. A., & Retsios, V. (2004). Site selection for waste disposal through spatial multiple criteria decision analysis. Journal of telecommunications and information technology, 28-38.
  • Sharma, H. B., Vanapalli, K. R., Cheela, V. S., Ranjan, V. P., Jaglan, A. K., Dubey, B., ... & Bhattacharya, J. (2020). Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, 162, 105052. doi: 10.1016/j.resconrec.2020.105052
  • Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of advanced research, 24, 91. https://doi.org/ 10.1016/j.jare.2020.03.005
  • Shi, Q., Ren, H., Ma, X., & Xiao, Y. (2019). Site selection of construction waste recycling plant. Journal of cleaner production, 227, 532-542. doi: 10.1016/j.jclepro.2019.04.252
  • South China Morning Post (SCMP) (2020). Coronavirus leaves China with mountains of medical waste. Accessed on: 10.07.2021. https://www.scmp.com/news/china/society/article/3074722/coronavirus-leaves-china-mountains-medical-waste
  • Stanujkic, D., Zavadskas, E. K., Karabasevic, D., Smarandache, F., & Turskis, Z. (2017). The use of the pivot pairwise relative criteria importance assessment method for determining the weights of criteria. Romanian Journal of Economic Forecasting, 20, 116-133.
  • Stević, Ž., Stjepanović, Ž., Božičković, Z., Das, D. K., & Stanujkić, D. (2018). Assessment of conditions for implementing information technology in a warehouse system: A novel fuzzy piprecia method. Symmetry, 10(11), 586. doi: 10.3390/sym10110586
  • Şener, Ş., Sener, E., & Karagüzel, R. (2011). Solid waste disposal site selection with GIS and AHP methodology: a case study in Senirkent–Uluborlu (Isparta) Basin, Turkey. Environmental monitoring and assessment, 173(1), 533-554. doi: 10.1007/s10661-010-1403-x
  • Taş, M. A. & Çakır, E., (2021). Green Supplier Selection Using Game Theory Based on Fuzzy SWARA. Sakarya University Journal of Science (Preprint), 1-14. doi: 10.16984/saufenbilder.877919
  • Tomašević, M., Lapuh, L., Stević, Ž., Stanujkić, D., & Karabašević, D. (2020). Evaluation of criteria for the implementation of high-performance computing (HPC) in Danube Region countries using fuzzy PIPRECIA method. Sustainability, 12(7), 3017. doi: 10.3390/su12073017
  • Torkayesh, A. E., Zolfani, S. H., Kahvand, M., & Khazaelpour, P. (2021). Landfill location selection for healthcare waste of urban areas using hybrid BWM-grey MARCOS model based on GIS. Sustainable Cities and Society, 67, 102712. 10.1016/j.scs.2021.102712
  • Tseng, M. L. (2011). Using a hybrid MCDM model to evaluate firm environmental knowledge management in uncertainty. Applied Soft Computing, 11(1), 1340-1352. doi: 10.1016/j.asoc.2010.04.006
  • U. S. Food & Drug Administration (FDA) (2020). Q&A for Consumers | Hand Sanitizers and COVID-19. Accessed on: 15.07.2021. https://www.fda.gov/drugs/information-drug-class/qa-consumers-hand-sanitizers-and-covid-19
  • Vahidnia, M. H., Alesheikh, A. A., & Alimohammadi, A. (2009). Hospital site selection using fuzzy AHP and its derivatives. Journal of environmental management, 90(10), 3048-3056. doi: 10.1016/j.jenvman.2009.04.010
  • Vesković, S., Milinković, S., Abramović, B., & Ljubaj, I. (2020). Determining criteria significance in selecting reach stackers by applying the fuzzy PIPRECIA method. Operational Research in Engineering Sciences: Theory and Applications, 3(1), 72-88. doi: 10.31181/oresta2001072v
  • World Health Organization (WHO) (2021). COVID-19 advice for the public: Getting vaccinated. Accessed on: 01.08.2021 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice
  • Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353. doi: 10.1016/S0019-9958(65)90241-X
  • Żak, J., & Węgliński, S. (2014). The selection of the logistics center location based on MCDM/A methodology. Transportation Research Procedia, 3, 555-564. doi: 10.1016/j.trpro.2014.10.034
There are 40 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mehmet Ali Taş 0000-0003-3333-7972

Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 28

Cite

APA Taş, M. A. (2021). Assessment of Site Selection Criteria for Medical Waste during COVID-19 Pandemic. Avrupa Bilim Ve Teknoloji Dergisi(28), 63-69. https://doi.org/10.31590/ejosat.984857