Research Article
BibTex RIS Cite

Kademeli Lif Takviyeli Kompozit Beton Kirişlerin Eğilme Davranışı

Year 2021, Issue: 28, 338 - 345, 30.11.2021
https://doi.org/10.31590/ejosat.999026

Abstract

Bu çalışmada kademeli lif takviyeli kompozit kirişlerin eğilme dayanımları araştırılmıştır. Beton hacmine oranla %2 oranında lif (çelik ve makro sentetik polipropilen lif/MS) takviyeli karışımlar hazırlanmıştır. Katmanın konumuna (alt, üst ve tamamı) göre farklı özelliklerde hazırlanan 7 adet yarım ölçekli kiriş üzerinde 4 noktalı eğilme testi yapılmıştır. Deneyler sonrası numunelerde yük-deplasman davranışı, enerji yutma kapasitesi, çatlak ilerleyişi ve göçme durumları incelenmiştir. Yük taşıma kapasitelerinde referans kirişlere kıyasla, tamamı MS lif takviyeli olan kirişlerde %30, çelik lif takviyeli betonun alt katmanda olduğu kirişlerde %27 artış görülmüştür. MS lif takviyeli kirişlerde yük taşıma kapasiteleri maksimuma ulaştıktan sonra yük altında deplasman yapabilme kabiliyeti çelik lif içeren kirişlere göre daha fazla çıkmaktadır. Enerji yutma kapasiteleri incelendiğinde lif takviyeli betonun (FRC) alt katmanda olduğu kirişlerin, üst katmanda bulunan kirişlere oranla daha sünek davranış gözlenmiştir. FRC tabakasının kirişin üst kısmında olduğu durumlarda maksimum yük taşıma kapasitesine ulaşıldıktan sonra normal beton (NC) tabakasında erken göçme gözlendiğinden ani yük kayıpları gözlenmiştir. Çalışma sonucunda fiber miktarının azaltılmasının fiber kullanımının yaygın olduğu yapıların maliyetlerine olumlu yönde katkı sağlayacağı düşünülmektedir.

References

  • Abbass, W., Khan, M. I., & Mourad, S. (2018). Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Construction and Building Materials, 168, 556–569. https://doi.org/10.1016/j.conbuildmat.2018.02.164
  • Altoubat, S., Yazdanbakhsh, A., & Rieder, K. A. (2009). Shear behavior of macro-synthetic fiber-reinforced concrete beams without stirrups. ACI Materials Journal, 106(4), 381–389. https://doi.org/10.14359/56659
  • ASTM C 1116. (2015). Standard Specification for Fiber-Reinforced Concrete.
  • Biolzi, L., & Cattaneo, S. (2017). Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions. Cement and Concrete Composites, 77, 1–13. https://doi.org/10.1016/j.cemconcomp.2016.12.002
  • Bolat, H., Şimşek, O., Çullu, M., Durmuş, G., & Can, Ö. (2014). The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete. Composites Part B: Engineering, 61, 191–198. https://doi.org/10.1016/j.compositesb.2014.01.043
  • BS EN 197-1. (2011). Cement Composition, specifications and conformity criteria for common cements.
  • Buratti, N., Mazzotti, C., & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, 25(5), 2713–2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022
  • Chaboki, H. R., Ghalehnovi, M., Karimipour, A., & de Brito, J. (2018). Experimental study on the flexural behaviour and ductility ratio of steel fibres coarse recycled aggregate concrete beams. Construction and Building Materials, 186, 400–422. https://doi.org/10.1016/j.conbuildmat.2018.07.132
  • Chaboki, H. R., Ghalehnovi, M., Karimipour, A., de Brito, J., & Khatibinia, M. (2019). Shear behaviour of concrete beams with recycled aggregate and steel fibres. Construction and Building Materials, 204, 809–827. https://doi.org/10.1016/j.conbuildmat.2019.01.130
  • Chiranjeevi Reddy, K., & Subramaniam, K. V. L. (2017). Analysis for multi-linear stress-crack opening cohesive relationship: Application to macro-synthetic fiber reinforced concrete. Engineering Fracture Mechanics, 169, 128–145. https://doi.org/10.1016/j.engfracmech.2016.11.015
  • de Alencar Monteiro, V. M., Lima, L. R., & de Andrade Silva, F. (2018). On the mechanical behavior of polypropylene, steel and hybrid fiber reinforced self-consolidating concrete. Construction and Building Materials, 188, 280–291. https://doi.org/10.1016/j.conbuildmat.2018.08.103
  • Ding, Y., Liu, G., Hussain, A., Pacheco-Torgal, F., & Zhang, Y. (2019). Effect of steel fiber and carbon black on the self-sensing ability of concrete cracks under bending. Construction and Building Materials, 207, 630–639. https://doi.org/10.1016/j.conbuildmat.2019.02.160
  • Hasan, M. J., Afroz, M., & Mahmud, H. M. I. (2011). An Experimental Investigation on Mechanical Behavior of Macro Synthetic Fiber Reinforced Concrete. Environmental Engineering, 11(03), 18–23.
  • Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering A, 494(1–2), 153–157. https://doi.org/10.1016/j.msea.2008.05.037
  • Hu, B., & Wu, Y. F. (2018). Effect of shear span-to-depth ratio on shear strength components of RC beams. Engineering Structures, 168(May), 770–783. https://doi.org/10.1016/j.engstruct.2018.05.017
  • Hussein, L., & Amleh, L. (2015). Structural behavior of ultra-high performance fiber reinforced concrete-normal strength concrete or high strength concrete composite members. Construction and Building Materials, 93, 1105–1116. https://doi.org/10.1016/j.conbuildmat.2015.05.030
  • Issa, M. S., Metwally, I. M., & Elzeiny, S. M. (2011). Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars. Engineering Structures, 33(5), 1754–1763. https://doi.org/10.1016/j.engstruct.2011.02.014
  • Kazemi, M. T., Golsorkhtabar, H., Beygi, M. H. A., & Gholamitabar, M. (2017). Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods. Construction and Building Materials, 142, 482–489. https://doi.org/10.1016/j.conbuildmat.2017.03.089
  • Kazmi, S. M. S., Munir, M. J., Wu, Y. F., & Patnaikuni, I. (2018). Effect of macro-synthetic fibers on the fracture energy and mechanical behavior of recycled aggregate concrete. Construction and Building Materials, 189, 857–868. https://doi.org/10.1016/j.conbuildmat.2018.08.161
  • Kazmi, S. M. S., Munir, M. J., Wu, Y. F., Patnaikuni, I., Zhou, Y., & Xing, F. (2019). Axial stress-strain behavior of macro-synthetic fiber reinforced recycled aggregate concrete. Cement and Concrete Composites, 97(January), 341–356. https://doi.org/10.1016/j.cemconcomp.2019.01.005
  • Martinola, G., Meda, A., Plizzari, G. A., & Rinaldi, Z. (2010). Strengthening and repair of RC beams with fiber reinforced concrete. Cement and Concrete Composites, 32(9), 731–739. https://doi.org/10.1016/j.cemconcomp.2010.07.001
  • Mudadu, A., Tiberti, G., Germano, F., Plizzari, G. A., & Morbi, A. (2018). The effect of fiber orientation on the post-cracking behavior of steel fiber reinforced concrete under bending and uniaxial tensile tests. Cement and Concrete Composites, 93(July), 274–288. https://doi.org/10.1016/j.cemconcomp.2018.07.012
  • Nguyen, D. L., Thai, D. K., Nguyen, H. T. T., Nguyen, T. Q., & Le-Trung, K. (2021). Responses of composite beams with high-performance fiber-reinforced concrete. Construction and Building Materials, 270, 121814. https://doi.org/10.1016/j.conbuildmat.2020.121814
  • Oh, B. H., Kim, J. C., & Choi, Y. C. (2007). Fracture behavior of concrete members reinforced with structural synthetic fibers. Engineering Fracture Mechanics, 74(1–2), 243–257. https://doi.org/10.1016/j.engfracmech.2006.01.032
  • Pujadas, P., Blanco, A., Cavalaro, S., de la Fuente, A., & Aguado, A. (2017). The need to consider flexural post-cracking creep behavior of macro-synthetic fiber reinforced concrete. Construction and Building Materials, 149, 790–800. https://doi.org/10.1016/j.conbuildmat.2017.05.166
  • Smarzewski, P., & Barnat-Hunek, D. (2018). Property Assessment of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete. International Journal of Civil Engineering, 16(6), 593–606. https://doi.org/10.1007/s40999-017-0145-3
  • Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669–673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  • Sucharda, O., Pajak, M., Ponikiewski, T., & Konecny, P. (2017). Identification of mechanical and fracture properties of self-compacting concrete beams with different types of steel fibres using inverse analysis. Construction and Building Materials, 138, 263–275. https://doi.org/10.1016/j.conbuildmat.2017.01.077
  • Tong, T., Yuan, S., Wang, J., & Liu, Z. (2021). The role of bond strength in structural behaviors of UHPC-NC composite beams: Experimental investigation and finite element modeling. Composite Structures, 255(February 2020), 112914. https://doi.org/10.1016/j.compstruct.2020.112914
  • Yao, W., Li, J., & Wu, K. (2003). Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement and Concrete Research, 33(1), 27–30. https://doi.org/10.1016/S0008-8846(02)00913-4
  • Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction and Building Materials, 93, 180–188. https://doi.org/10.1016/j.conbuildmat.2015.05.105

Flexural Behavior of Graded Fiber Reinforced Composite Concrete Beams

Year 2021, Issue: 28, 338 - 345, 30.11.2021
https://doi.org/10.31590/ejosat.999026

Abstract

In this study, the flexural strengths of graded fiber-reinforced composite beams were investigated. Mixtures reinforced with fiber (steel and macro-synthetic polypropylene fiber/MS) at a ratio of 2% to the concrete volume were prepared. A 4-point bending test was performed on 7 half-scale beams prepared according to the position of the layer (bottom, top and whole). After the tests, load-displacement behavior, energy absorption capacity, crack propagation, and failure mechanism of the specimens were investigated. Compared to the reference beams, the load-carrying capacities increased by 30% in beams with full MS fiber reinforcement and by 27% in beams with steel fiber reinforced concrete in the substrate. After the load-carrying capacity of MS fiber-reinforced beams reaches the maximum, the ability to make displacement under load is higher than the beams containing steel fiber. When the energy absorption capacities are examined, it can be said that the beams with fiber reinforced concrete (FRC) in the bottom layer behave more ductility than the beams in the upper layer. In cases where the FRC layer is at the top of the beam, sudden load losses are observed as early failure is observed in the normal concrete (NC) layer after the maximum load-carrying capacity is reached. As a result of the study, it is thought that reducing the amount of fiber will contribute positively to the costs of structures where fiber use is common.

References

  • Abbass, W., Khan, M. I., & Mourad, S. (2018). Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Construction and Building Materials, 168, 556–569. https://doi.org/10.1016/j.conbuildmat.2018.02.164
  • Altoubat, S., Yazdanbakhsh, A., & Rieder, K. A. (2009). Shear behavior of macro-synthetic fiber-reinforced concrete beams without stirrups. ACI Materials Journal, 106(4), 381–389. https://doi.org/10.14359/56659
  • ASTM C 1116. (2015). Standard Specification for Fiber-Reinforced Concrete.
  • Biolzi, L., & Cattaneo, S. (2017). Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions. Cement and Concrete Composites, 77, 1–13. https://doi.org/10.1016/j.cemconcomp.2016.12.002
  • Bolat, H., Şimşek, O., Çullu, M., Durmuş, G., & Can, Ö. (2014). The effects of macro synthetic fiber reinforcement use on physical and mechanical properties of concrete. Composites Part B: Engineering, 61, 191–198. https://doi.org/10.1016/j.compositesb.2014.01.043
  • BS EN 197-1. (2011). Cement Composition, specifications and conformity criteria for common cements.
  • Buratti, N., Mazzotti, C., & Savoia, M. (2011). Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Construction and Building Materials, 25(5), 2713–2722. https://doi.org/10.1016/j.conbuildmat.2010.12.022
  • Chaboki, H. R., Ghalehnovi, M., Karimipour, A., & de Brito, J. (2018). Experimental study on the flexural behaviour and ductility ratio of steel fibres coarse recycled aggregate concrete beams. Construction and Building Materials, 186, 400–422. https://doi.org/10.1016/j.conbuildmat.2018.07.132
  • Chaboki, H. R., Ghalehnovi, M., Karimipour, A., de Brito, J., & Khatibinia, M. (2019). Shear behaviour of concrete beams with recycled aggregate and steel fibres. Construction and Building Materials, 204, 809–827. https://doi.org/10.1016/j.conbuildmat.2019.01.130
  • Chiranjeevi Reddy, K., & Subramaniam, K. V. L. (2017). Analysis for multi-linear stress-crack opening cohesive relationship: Application to macro-synthetic fiber reinforced concrete. Engineering Fracture Mechanics, 169, 128–145. https://doi.org/10.1016/j.engfracmech.2016.11.015
  • de Alencar Monteiro, V. M., Lima, L. R., & de Andrade Silva, F. (2018). On the mechanical behavior of polypropylene, steel and hybrid fiber reinforced self-consolidating concrete. Construction and Building Materials, 188, 280–291. https://doi.org/10.1016/j.conbuildmat.2018.08.103
  • Ding, Y., Liu, G., Hussain, A., Pacheco-Torgal, F., & Zhang, Y. (2019). Effect of steel fiber and carbon black on the self-sensing ability of concrete cracks under bending. Construction and Building Materials, 207, 630–639. https://doi.org/10.1016/j.conbuildmat.2019.02.160
  • Hasan, M. J., Afroz, M., & Mahmud, H. M. I. (2011). An Experimental Investigation on Mechanical Behavior of Macro Synthetic Fiber Reinforced Concrete. Environmental Engineering, 11(03), 18–23.
  • Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering A, 494(1–2), 153–157. https://doi.org/10.1016/j.msea.2008.05.037
  • Hu, B., & Wu, Y. F. (2018). Effect of shear span-to-depth ratio on shear strength components of RC beams. Engineering Structures, 168(May), 770–783. https://doi.org/10.1016/j.engstruct.2018.05.017
  • Hussein, L., & Amleh, L. (2015). Structural behavior of ultra-high performance fiber reinforced concrete-normal strength concrete or high strength concrete composite members. Construction and Building Materials, 93, 1105–1116. https://doi.org/10.1016/j.conbuildmat.2015.05.030
  • Issa, M. S., Metwally, I. M., & Elzeiny, S. M. (2011). Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars. Engineering Structures, 33(5), 1754–1763. https://doi.org/10.1016/j.engstruct.2011.02.014
  • Kazemi, M. T., Golsorkhtabar, H., Beygi, M. H. A., & Gholamitabar, M. (2017). Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods. Construction and Building Materials, 142, 482–489. https://doi.org/10.1016/j.conbuildmat.2017.03.089
  • Kazmi, S. M. S., Munir, M. J., Wu, Y. F., & Patnaikuni, I. (2018). Effect of macro-synthetic fibers on the fracture energy and mechanical behavior of recycled aggregate concrete. Construction and Building Materials, 189, 857–868. https://doi.org/10.1016/j.conbuildmat.2018.08.161
  • Kazmi, S. M. S., Munir, M. J., Wu, Y. F., Patnaikuni, I., Zhou, Y., & Xing, F. (2019). Axial stress-strain behavior of macro-synthetic fiber reinforced recycled aggregate concrete. Cement and Concrete Composites, 97(January), 341–356. https://doi.org/10.1016/j.cemconcomp.2019.01.005
  • Martinola, G., Meda, A., Plizzari, G. A., & Rinaldi, Z. (2010). Strengthening and repair of RC beams with fiber reinforced concrete. Cement and Concrete Composites, 32(9), 731–739. https://doi.org/10.1016/j.cemconcomp.2010.07.001
  • Mudadu, A., Tiberti, G., Germano, F., Plizzari, G. A., & Morbi, A. (2018). The effect of fiber orientation on the post-cracking behavior of steel fiber reinforced concrete under bending and uniaxial tensile tests. Cement and Concrete Composites, 93(July), 274–288. https://doi.org/10.1016/j.cemconcomp.2018.07.012
  • Nguyen, D. L., Thai, D. K., Nguyen, H. T. T., Nguyen, T. Q., & Le-Trung, K. (2021). Responses of composite beams with high-performance fiber-reinforced concrete. Construction and Building Materials, 270, 121814. https://doi.org/10.1016/j.conbuildmat.2020.121814
  • Oh, B. H., Kim, J. C., & Choi, Y. C. (2007). Fracture behavior of concrete members reinforced with structural synthetic fibers. Engineering Fracture Mechanics, 74(1–2), 243–257. https://doi.org/10.1016/j.engfracmech.2006.01.032
  • Pujadas, P., Blanco, A., Cavalaro, S., de la Fuente, A., & Aguado, A. (2017). The need to consider flexural post-cracking creep behavior of macro-synthetic fiber reinforced concrete. Construction and Building Materials, 149, 790–800. https://doi.org/10.1016/j.conbuildmat.2017.05.166
  • Smarzewski, P., & Barnat-Hunek, D. (2018). Property Assessment of Hybrid Fiber-Reinforced Ultra-High-Performance Concrete. International Journal of Civil Engineering, 16(6), 593–606. https://doi.org/10.1007/s40999-017-0145-3
  • Song, P. S., & Hwang, S. (2004). Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 18(9), 669–673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
  • Sucharda, O., Pajak, M., Ponikiewski, T., & Konecny, P. (2017). Identification of mechanical and fracture properties of self-compacting concrete beams with different types of steel fibres using inverse analysis. Construction and Building Materials, 138, 263–275. https://doi.org/10.1016/j.conbuildmat.2017.01.077
  • Tong, T., Yuan, S., Wang, J., & Liu, Z. (2021). The role of bond strength in structural behaviors of UHPC-NC composite beams: Experimental investigation and finite element modeling. Composite Structures, 255(February 2020), 112914. https://doi.org/10.1016/j.compstruct.2020.112914
  • Yao, W., Li, J., & Wu, K. (2003). Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cement and Concrete Research, 33(1), 27–30. https://doi.org/10.1016/S0008-8846(02)00913-4
  • Yin, S., Tuladhar, R., Shi, F., Combe, M., Collister, T., & Sivakugan, N. (2015). Use of macro plastic fibres in concrete: A review. Construction and Building Materials, 93, 180–188. https://doi.org/10.1016/j.conbuildmat.2015.05.105
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Abdullah Müsevitoğlu 0000-0002-0293-3424

Atilla Özütok 0000-0002-9000-283X

Serkan Salkım This is me 0000-0002-0930-687X

Oğuzhan Çağlar This is me 0000-0003-4486-5076

Gökalp Kırca This is me 0000-0002-5475-4815

Kadirhan Ertürk 0000-0002-9637-1302

Mesut Acar This is me 0000-0001-7224-3595

Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 28

Cite

APA Müsevitoğlu, A., Özütok, A., Salkım, S., Çağlar, O., et al. (2021). Kademeli Lif Takviyeli Kompozit Beton Kirişlerin Eğilme Davranışı. Avrupa Bilim Ve Teknoloji Dergisi(28), 338-345. https://doi.org/10.31590/ejosat.999026