Research Article
BibTex RIS Cite

Moleküler kenetlenme ve farmakolojik analiz ile SARS-CoV-2 için potansiyel inhibitörler olarak bazı flavanonların değerlendirilmesi

Year 2021, Issue: 31, 974 - 981, 31.12.2021
https://doi.org/10.31590/ejosat.1010924

Abstract

Yeni koronavirüs hastalığı 2019 (COVID-19) ilk olarak Aralık 2019 itibariyle rapor edilmiş daha sonra hızla küresel bir salgına dönüşmüştür. COVID 19 hastalığına yönelik çeşitli önleyici aşılar şaşırtıcı bir hızla geliştirilmiş olmasına rağmen Coronavirüse karşı etkili antiviral ilaçların bulunmaması, tedavi edici ve koruyucu ilaçların tanımlanmasını zorunlu kılmaktadır. Bu çalışma kapsamında ilaç yeniden konumlandırma yaklaşımı benimsenerek doğal bitki kaynaklı olan Eriodictyol, Hesperetin and Naringenin bileşikleri in silico yöntemlerle incelenmiştir. Bu bağlamda üç bileşiğin SARS-CoV-2 main protease karşı afinetesi moleküler docking yöntemiyle incelenmiş bağlanma enerijileri sırasıyla -7.3, -7.2 ve -7.7 kcal/mol olarak hesaplanmıştır. Oluşan protein-flavanon bileşikleri kararlı kompleks yapılar oluşturmuştur. Çalışmanın diğer bölümünde ise bu bileşiklerin farmakolojik ve fizikokimyasal özellikleri ADME standartları ölçüsünde Lipinski kuralları gözetilerek incelenmiş ve bileşiklerin yüksek biyoyararlanım profili sergilediği bulunmuştur.

References

  • Aishwarya, S., Gunasekaran, K., Sagaya Jansi, R., & Sangeetha, G. (2021). From genomes to molecular dynamics – A bottom up approach in extrication of SARS CoV-2 main protease inhibitors. Computational Toxicology, 18(December 2020), 100156. https://doi.org/10.1016/j.comtox.2021.100156
  • Alghamdi, H. A., Attique, S. A., Yan, W., Arooj, A., Albulym, O., Zhu, D., Bilal, M., & Nawaz, M. Z. (2021). Repurposing the inhibitors of COVID-19 key proteins through molecular docking approach. Process Biochemistry, 110(August), 216–222. https://doi.org/10.1016/j.procbio.2021.08.015
  • Azim, K. F., Ahmed, S. R., Banik, A., Khan, M. M. R., Deb, A., & Somana, S. R. (2020). Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach. Informatics in Medicine Unlocked, 20, 100367. https://doi.org/10.1016/j.imu.2020.100367
  • Bharti, R., & Shukla, S. K. (2021). Molecules against COVID-19: An in Silico Approach for Drug Development. Journal of Electronic Science and Technology, 19(1), 14–24. https://doi.org/10.1016/j.jnlest.2021.100095
  • Bora, A., Pacureanu, L., & Crisan, L. (2020). In Silico Study of Some Natural Flavonoids as Potential Agents against COVID-19: Preliminary Results. Chemistry Proceedings, 3(1), 25. https://doi.org/10.3390/ecsoc-24-08343
  • Chaudhry, S. N., Hazafa, A., Mumtaz, M., Kalsoom, U., Abbas, S., Kainaat, A., Bilal, S., Zafar, N., Siddique, A., & Zafar, A. (2020). New insights on possible vaccine development against SARS-CoV-2. Life Sciences, 260, 118421. https://doi.org/10.1016/j.lfs.2020.118421
  • Cheke, R. S. (2020). The Molecular Docking Study of Potential Drug Candidates Showing Anti-COVID-19 Activity by Exploring of Therapeutic Targets of SARS-CoV-2. Eurasian Journal of Medicine and Oncology, 4(3), 185–195. https://doi.org/10.14744/ejmo.2020.31503
  • COVID-19 pandemic by country and territory - Wikipedia. (n.d.). Retrieved October 15, 2021, from https://en.wikipedia.org/wiki/COVID-19_pandemic_by_country_and_territory
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Deng, J., Hou, X., Zhang, T., Bai, G., Hao, E., Chu, J. J. H., Wattanathorn, J., Sirisa-ard, P., Soo Ee, C., Low, J., & Liu, C. (2020). Carry forward advantages of traditional medicines in prevention and control of outbreak of COVID-19 pandemic. Chinese Herbal Medicines, 12(3), 207–213. https://doi.org/10.1016/j.chmed.2020.05.003
  • Huang, F., Li, Y., Leung, E. L. H., Liu, X., Liu, K., Wang, Q., Lan, Y., Li, X., Yu, H., Cui, L., Luo, H., & Luo, L. (2020). A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacological Research, 158(April), 104929. https://doi.org/10.1016/j.phrs.2020.104929
  • Isika, D., Çeşme, M., Osonga, F. J., & Sadik, O. A. (2020). Novel quercetin and apigenin-acetamide derivatives: Design, synthesis, characterization, biological evaluation and molecular docking studies. RSC Advances, 10(42), 25046–25058. https://doi.org/10.1039/d0ra04559d
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X. X. X. X., You, T., Liu, X. X. X. X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kalai, F. El, Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K., & Benchat, N. (2021). Synthesis, spectroscopy, crystal structure, TGA/DTA study, DFT and molecular docking investigations of (E)-4-(4-methylbenzyl)-6-styrylpyridazin-3(2H)-one. Journal of Molecular Structure, 1228, 129435. https://doi.org/10.1016/j.molstruc.2020.129435
  • Kouznetsov, V. V. (2020). COVID-19 treatment: Much research and testing, but far, few magic bullets against SARS-CoV-2 coronavirus. In European Journal of Medicinal Chemistry (Vol. 203). Elsevier Masson SAS. https://doi.org/10.1016/j.ejmech.2020.112647
  • Kumar, A., Choudhir, G., Shukla, S. K., Sharma, M., Tyagi, P., Bhushan, A., & Rathore, M. (2020). Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 0(0), 1–11. https://doi.org/10.1080/07391102.2020.1772112
  • Kumar Verma, A., Kumar, V., Singh, S., Goswami, B. C., Camps, I., Sekar, A., Yoon, S., & Lee, K. W. (2021). Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomedicine and Pharmacotherapy, 137, 111356. https://doi.org/10.1016/j.biopha.2021.111356
  • Naveja, J. J., Madariaga-Mazón, A., Flores-Murrieta, F., Granados-Montiel, J., Maradiaga-Ceceña, M., Alaniz, V. D., Maldonado-Rodriguez, M., García-Morales, J., Senosiain-Peláez, J. P., & Martinez-Mayorga, K. (2021). Union is strength: antiviral and anti-inflammatory drugs for COVID-19. Drug Discovery Today, 26(1), 229–239. https://doi.org/10.1016/j.drudis.2020.10.018
  • Negi, M., Chawla, P. A., Faruk, A., & Chawla, V. (2020). Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic. Bioorganic Chemistry, 104(August), 104315. https://doi.org/10.1016/j.bioorg.2020.104315
  • Onur, S., Çeşme, M., Köse, M., & Tümer, F. (2021). New imino-methoxy derivatives: design, synthesis, characterization, antimicrobial activity, DNA interaction and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 0(0), 1–13. https://doi.org/10.1080/07391102.2021.1955741
  • Parveen, S., & Alnoman, R. B. (2021). Potential exploration of recent FDA-approved anticancer drugs against models of SARS-CoV-2’s main protease and spike glycoprotein: A computational study. Biointerface Research in Applied Chemistry, 11(3), 10059–10073. https://doi.org/10.33263/BRIAC113.1005910073
  • Peterson, L. (2020). COVID-19 and Flavonoids: In Silico Molecular Dynamics Docking to the Active Catalytic Site of SARS-CoV and SARS-CoV-2 Main Protease. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3599426
  • Şahin, İ., Çeşme, M., Özgeriş, F. B., Güngör, Ö., & Tümer, F. (2022). Design and synthesis of 1,4-disubstituted 1,2,3-triazoles: Biological evaluation, in silico molecular docking and ADME screening. Journal of Molecular Structure, 1247, 131344. https://doi.org/10.1016/j.molstruc.2021.131344
  • Teli, D. M., Shah, M. B., & Chhabria, M. T. (2021). In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Frontiers in Molecular Biosciences, 7(January), 599079. https://doi.org/10.3389/fmolb.2020.599079

Evaluation of some flavanones as potential inhibitors for SARS-CoV-2 by molecular docking and pharmacological analysis

Year 2021, Issue: 31, 974 - 981, 31.12.2021
https://doi.org/10.31590/ejosat.1010924

Abstract

The novel coronavirus disease 2019 (COVID-19) was first described in December 2019 and then rapidly turned into a global epidemic. Although various preventive vaccines for COVID 19 disease have been developed at an astonishing pace, the lack of effective antiviral drugs against Coronavirus makes it necessary to identify therapeutic and preventive drugs. Within the scope of this study, natural plant-derived Eriodictyol, Hesperetin and Naringenin compounds were investigated by in silico methods by adopting a drug repositioning approach. In this context, the affinity of the three compounds against SARS-CoV-2 main protease was investigated by the molecular docking method, and their binding energies were calculated as -7.3, -7.2 and -7.7 kcal/mol, respectively. The resulting protein-flavanone compounds formed stable complex structures. In the other part of the study, these compounds' pharmacological and physicochemical properties were examined under the ADME standards, observing the Lipinski rules, and it was found that the compounds exhibited a high bioavailability profile.

References

  • Aishwarya, S., Gunasekaran, K., Sagaya Jansi, R., & Sangeetha, G. (2021). From genomes to molecular dynamics – A bottom up approach in extrication of SARS CoV-2 main protease inhibitors. Computational Toxicology, 18(December 2020), 100156. https://doi.org/10.1016/j.comtox.2021.100156
  • Alghamdi, H. A., Attique, S. A., Yan, W., Arooj, A., Albulym, O., Zhu, D., Bilal, M., & Nawaz, M. Z. (2021). Repurposing the inhibitors of COVID-19 key proteins through molecular docking approach. Process Biochemistry, 110(August), 216–222. https://doi.org/10.1016/j.procbio.2021.08.015
  • Azim, K. F., Ahmed, S. R., Banik, A., Khan, M. M. R., Deb, A., & Somana, S. R. (2020). Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach. Informatics in Medicine Unlocked, 20, 100367. https://doi.org/10.1016/j.imu.2020.100367
  • Bharti, R., & Shukla, S. K. (2021). Molecules against COVID-19: An in Silico Approach for Drug Development. Journal of Electronic Science and Technology, 19(1), 14–24. https://doi.org/10.1016/j.jnlest.2021.100095
  • Bora, A., Pacureanu, L., & Crisan, L. (2020). In Silico Study of Some Natural Flavonoids as Potential Agents against COVID-19: Preliminary Results. Chemistry Proceedings, 3(1), 25. https://doi.org/10.3390/ecsoc-24-08343
  • Chaudhry, S. N., Hazafa, A., Mumtaz, M., Kalsoom, U., Abbas, S., Kainaat, A., Bilal, S., Zafar, N., Siddique, A., & Zafar, A. (2020). New insights on possible vaccine development against SARS-CoV-2. Life Sciences, 260, 118421. https://doi.org/10.1016/j.lfs.2020.118421
  • Cheke, R. S. (2020). The Molecular Docking Study of Potential Drug Candidates Showing Anti-COVID-19 Activity by Exploring of Therapeutic Targets of SARS-CoV-2. Eurasian Journal of Medicine and Oncology, 4(3), 185–195. https://doi.org/10.14744/ejmo.2020.31503
  • COVID-19 pandemic by country and territory - Wikipedia. (n.d.). Retrieved October 15, 2021, from https://en.wikipedia.org/wiki/COVID-19_pandemic_by_country_and_territory
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Deng, J., Hou, X., Zhang, T., Bai, G., Hao, E., Chu, J. J. H., Wattanathorn, J., Sirisa-ard, P., Soo Ee, C., Low, J., & Liu, C. (2020). Carry forward advantages of traditional medicines in prevention and control of outbreak of COVID-19 pandemic. Chinese Herbal Medicines, 12(3), 207–213. https://doi.org/10.1016/j.chmed.2020.05.003
  • Huang, F., Li, Y., Leung, E. L. H., Liu, X., Liu, K., Wang, Q., Lan, Y., Li, X., Yu, H., Cui, L., Luo, H., & Luo, L. (2020). A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacological Research, 158(April), 104929. https://doi.org/10.1016/j.phrs.2020.104929
  • Isika, D., Çeşme, M., Osonga, F. J., & Sadik, O. A. (2020). Novel quercetin and apigenin-acetamide derivatives: Design, synthesis, characterization, biological evaluation and molecular docking studies. RSC Advances, 10(42), 25046–25058. https://doi.org/10.1039/d0ra04559d
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X. X. X. X., You, T., Liu, X. X. X. X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kalai, F. El, Çınar, E. B., Lai, C. H., Daoui, S., Chelfi, T., Allali, M., Dege, N., Karrouchi, K., & Benchat, N. (2021). Synthesis, spectroscopy, crystal structure, TGA/DTA study, DFT and molecular docking investigations of (E)-4-(4-methylbenzyl)-6-styrylpyridazin-3(2H)-one. Journal of Molecular Structure, 1228, 129435. https://doi.org/10.1016/j.molstruc.2020.129435
  • Kouznetsov, V. V. (2020). COVID-19 treatment: Much research and testing, but far, few magic bullets against SARS-CoV-2 coronavirus. In European Journal of Medicinal Chemistry (Vol. 203). Elsevier Masson SAS. https://doi.org/10.1016/j.ejmech.2020.112647
  • Kumar, A., Choudhir, G., Shukla, S. K., Sharma, M., Tyagi, P., Bhushan, A., & Rathore, M. (2020). Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 0(0), 1–11. https://doi.org/10.1080/07391102.2020.1772112
  • Kumar Verma, A., Kumar, V., Singh, S., Goswami, B. C., Camps, I., Sekar, A., Yoon, S., & Lee, K. W. (2021). Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomedicine and Pharmacotherapy, 137, 111356. https://doi.org/10.1016/j.biopha.2021.111356
  • Naveja, J. J., Madariaga-Mazón, A., Flores-Murrieta, F., Granados-Montiel, J., Maradiaga-Ceceña, M., Alaniz, V. D., Maldonado-Rodriguez, M., García-Morales, J., Senosiain-Peláez, J. P., & Martinez-Mayorga, K. (2021). Union is strength: antiviral and anti-inflammatory drugs for COVID-19. Drug Discovery Today, 26(1), 229–239. https://doi.org/10.1016/j.drudis.2020.10.018
  • Negi, M., Chawla, P. A., Faruk, A., & Chawla, V. (2020). Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic. Bioorganic Chemistry, 104(August), 104315. https://doi.org/10.1016/j.bioorg.2020.104315
  • Onur, S., Çeşme, M., Köse, M., & Tümer, F. (2021). New imino-methoxy derivatives: design, synthesis, characterization, antimicrobial activity, DNA interaction and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 0(0), 1–13. https://doi.org/10.1080/07391102.2021.1955741
  • Parveen, S., & Alnoman, R. B. (2021). Potential exploration of recent FDA-approved anticancer drugs against models of SARS-CoV-2’s main protease and spike glycoprotein: A computational study. Biointerface Research in Applied Chemistry, 11(3), 10059–10073. https://doi.org/10.33263/BRIAC113.1005910073
  • Peterson, L. (2020). COVID-19 and Flavonoids: In Silico Molecular Dynamics Docking to the Active Catalytic Site of SARS-CoV and SARS-CoV-2 Main Protease. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3599426
  • Şahin, İ., Çeşme, M., Özgeriş, F. B., Güngör, Ö., & Tümer, F. (2022). Design and synthesis of 1,4-disubstituted 1,2,3-triazoles: Biological evaluation, in silico molecular docking and ADME screening. Journal of Molecular Structure, 1247, 131344. https://doi.org/10.1016/j.molstruc.2021.131344
  • Teli, D. M., Shah, M. B., & Chhabria, M. T. (2021). In silico Screening of Natural Compounds as Potential Inhibitors of SARS-CoV-2 Main Protease and Spike RBD: Targets for COVID-19. Frontiers in Molecular Biosciences, 7(January), 599079. https://doi.org/10.3389/fmolb.2020.599079
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fatma Nur Özkömeç This is me 0000-0002-7789-735X

Mustafa Çeşme 0000-0002-2020-5965

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Özkömeç, F. N., & Çeşme, M. (2021). Evaluation of some flavanones as potential inhibitors for SARS-CoV-2 by molecular docking and pharmacological analysis. Avrupa Bilim Ve Teknoloji Dergisi(31), 974-981. https://doi.org/10.31590/ejosat.1010924