Research Article
BibTex RIS Cite

Performance Comparison of Different Hole Transport Layer Configurations in a Perovskite-based Solar Cell using SCAPS-1D Simulation

Year 2021, Issue: 31, 121 - 126, 31.12.2021
https://doi.org/10.31590/ejosat.951602

Abstract

Due to the solar cell industry, environmentally friendly and low-cost electricity generation processes, the use of non-renewable energy sources, especially fossil fuels, is developing day by day. Among the different solar cells under use, perovskite solar cells have recently experienced rapid growth in research due to their high performance and low production costs at the same time. Perovskite solar cells typically consist of some main layers such as absorbent, carrier layers and electrodes. The hole transport layer (HTL) is very important in the perovskite solar cell structure due to its important role in cell performance. The light absorbed by the perovskite layer leads to the formation of electrons and holes. These load carriers are then transported to the electrodes by the electron and hole transport layers. There are several types of HTL, such as small molecules in the cell structure, polymeric and inorganic HTLs. In addition, these different options can be in various configurations such as tandem, composite and single structures. In this study, three common HTL types, Spiro-OMeTAD, P3HT and Cu2O, were studied and their effects on cell performance in different composite, tandem and single forms were investigated and their results were compared. These comparisons were made in the simulation environment in SCAPS-1D software. The final results showed approximately the best 27% efficiency of the use of tandem structure in the HTL configuration with Spiro-OMeTAD and P3HT in the special perovskite solar cell created in this study.

References

  • Hussain I, Tran HP, Jaksik J, Moore J, Islam N, Uddin MJ. “Functional materials, device architecture, and flexibility of perovskite solar cell” Emergent Materials, vol. 1(3), pp.54-133, December 2018.
  • Seo S, Jeong S, Park H, Shin H, Park NG. Atomic layer deposition for efficient and stable perovskite solar cells. Chemical Communications. 2019;55(17):2403-16.
  • Ramli NF, Sepeai S, Rostan NF, Ludin NA, Ibrahim MA, Teridi MA, Zaidi SH. Model development of monolithic tandem silicon-perovskite solar cell by SCAPS simulation. InAIP Conference Proceedings 2017 May 5 (Vol. 1838, No. 1, p. 020006). AIP Publishing LLC.
  • Hossain A, Hasan MM, Rahman MS, Hossain MM. Fully Lead-Free All Perovskite Tandem Solar Cell with Improved Efficiency: Device Simulation Using SCAPS-1D. In2020 IEEE Region 10 Symposium (TENSYMP) 2020 Jun 5 (pp. 1221-1224). IEEE.
  • Burgelman M, Nollet P, Degrave S. “Modelling polycrystalline semiconductor solar cells. Thin solid films” vol. 361, pp.32-527, February 2000.
  • Karimi E, Ghorashi SM. “Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells”, Optik, vol. 130, pp.8-650, February 2017.
  • Karimi E, Ghorashi SM. “Simulation of perovskite solar cell with P3HT hole-transporting materials”, Journal of Nanophotonics, vol. 11(3), pp. 032510, March 2017.
  • Kim E, Bhattacharya I. “Material selection method for a perovskite solar cell design based on the genetic algorithm”. In2020 47th IEEE Photovoltaic Specialists Conference (PVSC), pp. 2631-2634, 15 Jun 2020.
  • Zhang F, Shi W, Luo J, Pellet N, Yi C, Li X, Zhao X, Dennis TJ, Li X, Wang S, Xiao Y. “Isomer‐pure bis‐PCBM‐assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability”, Advanced Materials, vol. 29(17), pp. 1606806, May 2017.
  • Kapur VK, Basol BM, Tseng ES. “Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells”, Solar cells, vol. 21(1-4), pp.65-72, June 1987.
  • Kapur VK, Bansal A, Le P, Asensio OI. “Non-vacuum processing of CuIn1− xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks”. Thin solid films, vol. 431, pp.7-53, May 2003.
  • Dhere NG, Ghongadi SR, Pandit MB, Jahagirdar AH, Scheiman D. “CIGS2 thin‐film solar cells on flexible foils for space power”, Progress in Photovoltaics: Research and Applications, vol. 10(6), pp.16-407, September 2002.

SCAPS-1D Simülasyonu Kullanılarak Perovskit Tabanlı Güneş Pilinde Farklı Delik Aktarım Katmanı Konfigürasyonlarının Performans Karşılaştırması

Year 2021, Issue: 31, 121 - 126, 31.12.2021
https://doi.org/10.31590/ejosat.951602

Abstract

Güneş pili endüstrisi, çevre dostu ve düşük maliyetli elektrik üretim süreçleri nedeniyle, yenilenemeyen enerji kaynaklarının özellikle fosil yakıtların yerine, kullanımı her geçen gün artmaktadır. Aynı zamanda bilinen farklı güneş pilleri arasındaki perovskit güneş pilleri ile yapılan araştırmalarda yüksek performansları ve düşük üretim maliyetleri sebebiyle hızlı bir büyüme yaşanmıştır. Perovskit güneş pilleri tipik olarak; emici, taşıyıcı katmanlar ve elektrotlar gibi bazı ana katmanlardan oluşur. Hücre performansındaki önemli rolü nedeniyle delik taşıma tabakası (HTL), perovskit güneş pili yapısında çok önemlidir. Perovskit tabakası tarafından emilen ışık, elektron ve deliklerin oluşumuna yol açar. Bu yük taşıyıcıları daha sonra elektron ve delik taşıma katmanları ile elektrotlara taşınır. Hücre yapısındaki küçük moleküller, polimerik ve inorganik HTL'ler gibi çeşitli HTL türleri vardır. Ayrıca bu farklı seçenekler, tek yapılı, tandem ve kompozit gibi çeşitli konfigürasyonlarda olabilir. Bu çalışmada, üç yaygın HTL tipi, Spiro-OMeTAD, P3HT ve Cu2O oluşturulmuş, bunların farklı kompozit, tandem ve tek formlardaki hücre performansı üzerindeki etkileri araştırılmış olup sonuçları karşılaştırılmıştır. Bu karşılaştırmalar SCAPS-1D yazılımındaki simülasyon ortamında yapılmıştır. Nihai sonuçlar, bu çalışmada oluşturulan özel perovskit güneş pilinde HTL tipi, Spiro-OMeTAD ve P3HT konfigürasyonundaki tandem yapı kullanımın yaklaşık % 27 ile en iyi verimlilik olduğunu göstermiştir.

References

  • Hussain I, Tran HP, Jaksik J, Moore J, Islam N, Uddin MJ. “Functional materials, device architecture, and flexibility of perovskite solar cell” Emergent Materials, vol. 1(3), pp.54-133, December 2018.
  • Seo S, Jeong S, Park H, Shin H, Park NG. Atomic layer deposition for efficient and stable perovskite solar cells. Chemical Communications. 2019;55(17):2403-16.
  • Ramli NF, Sepeai S, Rostan NF, Ludin NA, Ibrahim MA, Teridi MA, Zaidi SH. Model development of monolithic tandem silicon-perovskite solar cell by SCAPS simulation. InAIP Conference Proceedings 2017 May 5 (Vol. 1838, No. 1, p. 020006). AIP Publishing LLC.
  • Hossain A, Hasan MM, Rahman MS, Hossain MM. Fully Lead-Free All Perovskite Tandem Solar Cell with Improved Efficiency: Device Simulation Using SCAPS-1D. In2020 IEEE Region 10 Symposium (TENSYMP) 2020 Jun 5 (pp. 1221-1224). IEEE.
  • Burgelman M, Nollet P, Degrave S. “Modelling polycrystalline semiconductor solar cells. Thin solid films” vol. 361, pp.32-527, February 2000.
  • Karimi E, Ghorashi SM. “Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells”, Optik, vol. 130, pp.8-650, February 2017.
  • Karimi E, Ghorashi SM. “Simulation of perovskite solar cell with P3HT hole-transporting materials”, Journal of Nanophotonics, vol. 11(3), pp. 032510, March 2017.
  • Kim E, Bhattacharya I. “Material selection method for a perovskite solar cell design based on the genetic algorithm”. In2020 47th IEEE Photovoltaic Specialists Conference (PVSC), pp. 2631-2634, 15 Jun 2020.
  • Zhang F, Shi W, Luo J, Pellet N, Yi C, Li X, Zhao X, Dennis TJ, Li X, Wang S, Xiao Y. “Isomer‐pure bis‐PCBM‐assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability”, Advanced Materials, vol. 29(17), pp. 1606806, May 2017.
  • Kapur VK, Basol BM, Tseng ES. “Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells”, Solar cells, vol. 21(1-4), pp.65-72, June 1987.
  • Kapur VK, Bansal A, Le P, Asensio OI. “Non-vacuum processing of CuIn1− xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks”. Thin solid films, vol. 431, pp.7-53, May 2003.
  • Dhere NG, Ghongadi SR, Pandit MB, Jahagirdar AH, Scheiman D. “CIGS2 thin‐film solar cells on flexible foils for space power”, Progress in Photovoltaics: Research and Applications, vol. 10(6), pp.16-407, September 2002.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Seyyedreza Hosseini 0000-0002-0946-7489

Nagihan Delibaş 0000-0001-5752-062X

Mahsa Bahramgour 0000-0002-2925-1538

Alireza Tabatabaei Mashayekh 0000-0002-4295-0923

Aligholi Niaie 0000-0001-5580-4266

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Hosseini, S., Delibaş, N., Bahramgour, M., Tabatabaei Mashayekh, A., et al. (2021). Performance Comparison of Different Hole Transport Layer Configurations in a Perovskite-based Solar Cell using SCAPS-1D Simulation. Avrupa Bilim Ve Teknoloji Dergisi(31), 121-126. https://doi.org/10.31590/ejosat.951602

Cited By