Anksiyete Bozukluğunda Makine Öğrenmesi Teknikleri
Year 2021,
Issue: 31, 365 - 374, 31.12.2021
Elif Altıntaş
,
Zeyneb Uylaş Aksu
,
Zeynep Gümüş Demir
Abstract
Son yıllarda psikiyatrik hastalıkların teşhisinin zamanlamasını, duyarlılığını ve kalitesini iyileştirmek için yapay zeka tabanlı uygulamalar geliştirilmekte ve kullanılmaktadır. Anksiyete bozukluğu olan deneklerin değerlendirilmesinde yapay zeka tekniklerinin kullanımına ilişkin mevcut literatürü gözden geçirmeyi amaçlanmaktadır. Anksiyete bozukluklarının ana kategorilerinden biri olan; ayrılık kaygısı bozukluğu, genelleşmiş kaygı bozukluğu, panik bozukluğu ve sosyal kaygı bozukluğu DSM-5 (Ruhsal Bozuklukların Tanısal ve İstatistiksel El Kitabı) ile ilgili 2015-2021 yılları arasındaki veri tabanları araştırılmıştır. Bu çalışmalarda kullanılan 30 farklı teknik belirlenmiştir. Yapılan çalışmalarda birden fazla algoritma ile karşılaştırmalar yapılmıştır. Bu algoritmalar arasında en çok kullanılan makine öğrenmesi yönteminde Rastgele Orman Algoritması görülmüştür. Ayrıca en iyi doğruluk performansı Rastgele Orman Algoritması'nda gözlemlenmiştir. Bu makale, kaygı üzerine yapılan bu son araştırma çalışmalarını eleştirel bir şekilde analiz etmektedir. Anksiyete hastalarından elde edilen verilerin klinik heterojenliği göz önüne alındığında, yapay zeka tekniklerinin tanı, kişiselleştirilmiş tedavi ve prognoz gibi alanlarda klinisyenlere ve araştırmacılara önemli bilgiler sağlayabileceği sonucuna varılmıştır.
References
- Yang, X., J. Lin and W. Zheng, Research on learning mechanism designing for equilibrated bipolar spiking neural networks. Artif Intell Rev, 2020. 53: p. 5189–5215. https://doi.org/10.1007/s10462-020-09818-5
- Górriz, J.M., J. Ramírez, A. Ortíz, F.J. Martínez-Murcia, F. et. al., Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications. Neurocomputing, 2020. 410:p. 237-270.
- Tuena, C., M. Chiappini, C. Repetto and G. Riva, Artificial Intelligence in Clinical Psychology. Reference Module in Neuroscience and Biobehavioral Psychology, Elsevier, 2022, ISBN 9780128093245, https://doi.org/10.1016/B978-0-12-818697-8.00001-7.
- Kour, H., J. Manhas and V. Sharma, Usage and implementation of neuro-fuzzy systems for classification and prediction in the diagnosis of different types of medical disorders: a decade review. Artif Intell Rev 2020. 53: p. 4651–4706. https://doi.org/10.1007/s10462-020-09804-x
- Riaz, M. And M.R. Hashmi, m-polar neutrosophic soft mapping with application to multiple personality disorder and its associated mental disorders. Artif Intell Rev, 2020. https://doi.org/10.1007/s10462-020-09912-8
- Iritani S, C. Habuchi, H. Sekiguchi and Y. Torii, Brain research and clinical psychiatry: establishment of a psychiatry brain bank in Japan Nagoya J Med Sci, 2018. 80 (3): p. 309-315. 10.18999/nagjms.80.3.309
- Poo, M.M., J.L. Du, N.Y. Ip, Z.Q. Xiong, B. Xu and T. Tan, China Brain Project: basic neuroscience, brain diseases, and brain-inspired computing Neuron, 2016. 92 (3) : p. 591-596. 10.1016/j.neuron.2016.10.050
- Rose, N., The Human Brain Project: social and ethical challenges. Neuron, 2014. 82 (6): p. 1212-1215. https://doi.org/10.1016/j.neuron.2014.06.001
- Liu, G.D., Y.C. Li, W. Zhang and L. Zhang L, A brief review of artificial intelligence applications and algorithms for psychiatric disorders. Engineering, 2019. 6(4): p. 462-467. https://doi.org/10.1016/j.eng.2019.06.008
- Buch, V.H., I. Ahmed and M. Maruthappu, Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract, 2018. 68(668): p. 143-144. https://doi.org/10.3399/bjgp18x695213
- Luxton, D.D., An introduction to artificial intelligence in behavioral and mental health care. In Artificial intelligence in behavioral and mental health care, Elseiver Academic Press, 2016, p. 1-26.
- Arbabshirani, M.R., S. Plis, J. Sui and V.D. Calhoun, Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage, 2017. 145: p. 137-165. https://dx.doi.org/10.1016%2Fj.neuroimage.2016.02.079
- Schoevers, R.A., C.D. van Borkul, F. Lamers, M.N. Servaas, J.A. Bastiaansen, A.T.F. Beekman and H. Riese, Affect fluctuations examined with ecological momentary assessment in patients with current or remitted depression and anxiety disorders. Psychological Medicine, 2020. 1: p. 1-10. 10.1017/S0033291720000689
- Gottschalk, M.G. and K. Domschke K, Novel developments in genetic and epigenetic mechanisms of anxiety. Current Opinion in Psychiatry, 2016. 29 (1) : 32-38. https://doi.org/10.1097/yco.0000000000000219
- Schiele, M.A. and K. Domschke, Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes, Brain, and Behavior, 2017. 17 : p. 1-15. 10.1111/gbb.12423
- Beesdo-Baum, K. and S. Knappe, (201) Developmental epidemiology of anxiety disorders. Child and Adolescent Psychiatric Clinics of North America, 2012. 21 (3): p. 457-478. https://psycnet.apa.org/doi/10.1016/j.chc.2012.05.001
- Whiteford, H.A., L. Degenhardt, J. Rehm, A.J. Baxter, A.J. Ferrari, H.E. Erskine and T. Vos, Global Burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet, 2013. 382 (9904): p. 1575-1586. https://doi.org/10.1016/s0140-6736(13)61611-6
- American Psychiatric Association, Diagnostic and statistical manual of mental disorders (5th. Ed.). 2013, Washington, DC: APA.
- Bandelow, B., S. Michaelis and D. Wedekind, Treatment of anxiety disorders. Dialogues in clinical neuroscience, 2017. 19(2): p. 93-107. https://dx.doi.org/10.31887%2FDCNS.2017.19.2%2Fbbandelow
- Graham, S., C. Depp, E.E. Lee, C. Nebeker, X. Tu, H.C. Kim and D.V. Jeste, Artificial intelligence for mental health and mental illnesses: an overview. Current psychiatry reports, 2019. 21(11): 116. 10.1007/s11920-019-1094-0
- Wolfers, T., J.K. Buitelaar, C.F. Beckmann, B. Franke and A.F. Marquand, From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neuroscience & Biobehaviora, 2015. l57: p. 328-349. https://doi.org/10.1016/j.neubiorev.2015.08.001
- Cornblath, E.J., D.M. Lydon-Staley and D.S. Bassett DS, Harnessing networks and machine learning in neuropsychiatric care. Current opinion in neurobiology, 2019. 55: p. 32-39. 10.1016/j.conb.2018.12.010
- Garcia-Ceja, E., M. Riegler, T. Nordgreen, P. Jakobsen, K.J. Oedegaard and J. Tørresen, Mental health monitoring with multimodal sensing and machine learning: A survey. Pervasive and Mobile Computing, 2018. 51: p. 1-26. https://doi.org/10.1016/j.pmcj.2018.09.003
- Trumpff, C., A. Marsland, R.P. Sloan, B.A. Kaufman and M. Picard, Predictors of ccf-mtDNA reactivity to acute psychological stress identified using machine learning classifiers: A proof-of-concept . Psychoneuroendocrinology, 2019. 107: p. 82-92. 10.1016/j.psyneuen.2019.05.001
- Smets, E., P. Casale, U. Großekathöfer, B. Lamichhane, W. De Raedt, K. Bogaerts and C. Van Hoof , Comparison of machine learning techniques for psychophysiological stress detection. In International Symposium on Pervasive Computing Paradigms for Mental Health, 2015. 604: p. 13-22. Springer, Cham. 10.1007/978-3-319-32270-4_2
- Carpenter, K.L., P. Sprechmann, R. Calderbank, and G.S. Egger, Quantifying risk for anxiety disorders in preschool children: A machine learning approach. PloS one, 2016. 11(11) , e0165524 https://doi.org/10.1371/journal.pone.0165524
- Mellem, M.S., Y. Liu, H. Gonzalez, M. Kollada and W.J. Martin, Machine learning models identify multimodal measurements highly predictive of transdiagnostic symptom severity for mood, anhedonia, and anxiety. Biological Psychiatry Cogn Neurosci Neuroimaging, 2020. 5(1): p. 56-67. https://doi.org/10.1016/j.bpsc.2019.07.007
- Portugal, L.C., J. Schrouff, R. Stiffler, M. Bertocci, G. Bebko, H. Chase and J. Mourão-Mirandaae, Predicting anxiety from wholebrain activity patterns to emotional faces in young adults: a machine learning approach. NeuroImage: Clinical, 2018. 23: 1018. https://dx.doi.org/10.1016%2Fj.nicl.2019.101813
- Lueken, U., B. Straube, Y. Yang, T. Hahn, K. Beesdo-Baum, H.U. Wittchen and B. Pfleiderer, Separating depressive comorbidity from panic disorder: a combined functional magnetic resonance imaging and machine learning approach. Journal of affective disorders, 2015. 184: p. 182-192. https://doi.org/10.1016/j.jad.2015.05.052
- Månsson, K.N., Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning. Translational psychiatry, 2015. 5(3): e530. https://dx.doi.org/10.1038%2Ftp.2015.22
- Boeke, E.A., A.J. Holmes and E.A. Phelps, Toward Robust Anxiety Biomarkers: A Machine Learning Approach in a Large-Scale Sample. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019. 5(8): p. 799-807. https://doi.org/10.1016/j.bpsc.2019.05.018
- Chan, F.H., T.J. Barry, A.B. Chan and J.H. Hsiao, Understanding visual attention to face emotions in social anxiety using hidden Markov models. Cognition and Emotion, 2020. 34(8): p. 1704-1710. https://doi.org/10.1080/02699931.2020.1781599
- Júnior, É.D.M.S., I.C. Passos, J. Scott, G. Bristot, E. Scotton, L.S.T Mendes and G.A. Salum, Decoding rumination: A machine learning approach to a transdiagnostic sample of outpatients with anxiety, mood and psychotic disorders. Journal of psychiatric research, 2020. 121: p. 207-213. 10.1016/j.jpsychires.2019.12.005
- Tennenhouse, L.G., R.A. Marrie, C.N. Bernstei and L.M. Lix, Machine-learning models for depression and anxiety in individuals with immune-mediated inflammatory disease. Journal of Psychosomatic Research, 2020. 134:110126. 10.1016/j.jpsychores.2020.110126
- Bokma, W.A., P. Zhutovsky, E.J. Giltay, R.A. Schoevers, B.W. Penninx, A.L. Van Balkom and G.A. Van Wingen, Predicting the naturalistic course in anxiety disorders using clinical and biological markers: a machine learning approach. Psychological Medicine, 2020. 11: p. 1-11. https://doi.org/10.1017/S0033291720001658
- Xing, M., J.M. Fitzgerald and H. Klumpp, Classification of Social Anxiety Disorder With Support Vector Machine Analysis Using Neural Correlates of Social Signals of Threat. Frontiers in psychiatry, 2020. 11: 144. https://doi.org/10.3389/fpsyt.2020.00144
- Priyaa, A., S. Garga and N.P. Tiggaa, Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms. Procedia Computer Science, 2020, p. 1258-1267.
- Kumar, P., S. Garg and A. Garg, Assessment of Anxiety, Depression and Stress using Machine Learning Models. Procedia Computer Science, 2020. 171: p. 1989-1998. https://doi.org/10.1016/j.procs.2020.04.213
- S.V.Praveen, RajeshIttamalla, GerardDeepak, Analyzing Indian general public’s perspective on anxiety, stress and trauma during Covid-19 -A machine learning study of 840,000 tweets , Diabetes & Metabolic Syndrome: Clinical Research & Reviews, Volume 15, Issue 3, May–June 2021, Pages 667-671, https://doi.org/10.1016/j.dsx.2021.03.016
- Wessel A. van Eeden, Chuan Luo, Albert M. van Hemert, Ingrid V.E. Carlier, Brenda W. Penninx, Klaas J. Wardenaar, Holger Hoos, Erik J. Giltay, Predicting the 9-year course of mood and anxiety disorders with automated machine learning: A comparison between auto-sklearn, naïve Bayes classifier, and traditional logistic regression, Psychiatry Research, Volume 299, 2021, 113823, ISSN 0165-1781, https://doi.org/10.1016/j.psychres.2021.113823
- Matthew D. Nemesure, Michael V. Heinz, Raphael Huang & Nicholas C. Jacobson, Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence, Scientific Reports 11, 2021. https://doi.org/10.1038/s41598-021-81368-4
- Kyoung-SaeNaa, Seo-EunChob, Seong-JinChoa, Machine learning-based discrimination of panic disorder from other anxiety disorders, Journal of Affective Disorders, Volume 278, 1 January 2021, 1-4, https://doi.org/10.1016/j.jad.2020.09.027
- David Perpetuini, Antonio Maria Chiarelli, Daniela Cardone, Chiara Filippini, Sergio Rinella, Simona Massimino, Francesco Bianco, Valentina Bucciarelli, Vincenzo Vinciguerra, Piero Fallica, Vincenzo Perciavalle, Sabina Gallina, Sabrina Conoci, Arcangelo Merla, PeerJ, Prediction of state anxiety by machine learning applied to photoplethysmography data, 2021 Jan 15;9:e10448. doi: 10.7717/peerj.10448. PMID: 33520434; PMCID: PMC7812926
- Nicholas C.Jacobson, Matthew D.Nemesure, Using Artificial Intelligence to Predict Change in Depression and Anxiety Symptoms in a Digital Intervention: Evidence from a Transdiagnostic Randomized Controlled Trial, Psychiatry Research, Volume 295, 2021, 113618, ISSN 0165-1781, https://doi.org/10.1016/j.psychres.2020.113618
- Nicholas C. Jacobson, Damien Lekkas, Raphael Huang, Natalie Thomas, Deep learning paired with wearable passive sensing data predicts deterioration in anxiety disorder symptoms across 17–18 years, Journal of Affective Disorders, Volume 282, 2021, Pages 104-111, ISSN 0165-0327, https://doi.org/10.1016/j.jad.2020.12.086
- Kurban, H. (2021). Metin Madenciliği ile Tıbbi Tedavi Alanlarının Yakınlıklarının Ölçülmesi . Avrupa Bilim ve Teknoloji Dergisi , (21) , 518-526 . 10.31590/ejosat.833199
Machine Learning Techniques for Anxiety Disorder
Year 2021,
Issue: 31, 365 - 374, 31.12.2021
Elif Altıntaş
,
Zeyneb Uylaş Aksu
,
Zeynep Gümüş Demir
Abstract
In recent years, artificial intelligence based applications have been improved and used to improve the timing, sensitivity and quality of diagnosis of psychiatric diseases. We aim to review the existing literature on the use of artificial intelligence techniques in the assessment of subjects with anxiety disorder. We searched databases about DSM-5 (Diagnostic and Statistical Manual of Mental Disorders) one of the main categories of anxiety disorders; Separation Anxiety Disorder, Generalized Anxiety Disorder, Panic Disorder and Social Anxiety Disorder between 2015-2021. We identified 30 different techniques on these works. Comparisons have been made with more than one algorithm in the studies. The Random Forest Algorithm has been seen in the most used machine learning method among these algorithms. In addition, the best accuracy performance has been observed in the Random Forest Algorithm. This article critically analyzes these recent research studies on anxiety. Considering the clinical heterogeneity of the data obtained from anxiety patients, we conclude that artificial intelligence techniques can provide important information to clinicians and researchers in areas such as diagnosis, personalized treatment, and prognosis.
References
- Yang, X., J. Lin and W. Zheng, Research on learning mechanism designing for equilibrated bipolar spiking neural networks. Artif Intell Rev, 2020. 53: p. 5189–5215. https://doi.org/10.1007/s10462-020-09818-5
- Górriz, J.M., J. Ramírez, A. Ortíz, F.J. Martínez-Murcia, F. et. al., Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications. Neurocomputing, 2020. 410:p. 237-270.
- Tuena, C., M. Chiappini, C. Repetto and G. Riva, Artificial Intelligence in Clinical Psychology. Reference Module in Neuroscience and Biobehavioral Psychology, Elsevier, 2022, ISBN 9780128093245, https://doi.org/10.1016/B978-0-12-818697-8.00001-7.
- Kour, H., J. Manhas and V. Sharma, Usage and implementation of neuro-fuzzy systems for classification and prediction in the diagnosis of different types of medical disorders: a decade review. Artif Intell Rev 2020. 53: p. 4651–4706. https://doi.org/10.1007/s10462-020-09804-x
- Riaz, M. And M.R. Hashmi, m-polar neutrosophic soft mapping with application to multiple personality disorder and its associated mental disorders. Artif Intell Rev, 2020. https://doi.org/10.1007/s10462-020-09912-8
- Iritani S, C. Habuchi, H. Sekiguchi and Y. Torii, Brain research and clinical psychiatry: establishment of a psychiatry brain bank in Japan Nagoya J Med Sci, 2018. 80 (3): p. 309-315. 10.18999/nagjms.80.3.309
- Poo, M.M., J.L. Du, N.Y. Ip, Z.Q. Xiong, B. Xu and T. Tan, China Brain Project: basic neuroscience, brain diseases, and brain-inspired computing Neuron, 2016. 92 (3) : p. 591-596. 10.1016/j.neuron.2016.10.050
- Rose, N., The Human Brain Project: social and ethical challenges. Neuron, 2014. 82 (6): p. 1212-1215. https://doi.org/10.1016/j.neuron.2014.06.001
- Liu, G.D., Y.C. Li, W. Zhang and L. Zhang L, A brief review of artificial intelligence applications and algorithms for psychiatric disorders. Engineering, 2019. 6(4): p. 462-467. https://doi.org/10.1016/j.eng.2019.06.008
- Buch, V.H., I. Ahmed and M. Maruthappu, Artificial intelligence in medicine: current trends and future possibilities. Br J Gen Pract, 2018. 68(668): p. 143-144. https://doi.org/10.3399/bjgp18x695213
- Luxton, D.D., An introduction to artificial intelligence in behavioral and mental health care. In Artificial intelligence in behavioral and mental health care, Elseiver Academic Press, 2016, p. 1-26.
- Arbabshirani, M.R., S. Plis, J. Sui and V.D. Calhoun, Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage, 2017. 145: p. 137-165. https://dx.doi.org/10.1016%2Fj.neuroimage.2016.02.079
- Schoevers, R.A., C.D. van Borkul, F. Lamers, M.N. Servaas, J.A. Bastiaansen, A.T.F. Beekman and H. Riese, Affect fluctuations examined with ecological momentary assessment in patients with current or remitted depression and anxiety disorders. Psychological Medicine, 2020. 1: p. 1-10. 10.1017/S0033291720000689
- Gottschalk, M.G. and K. Domschke K, Novel developments in genetic and epigenetic mechanisms of anxiety. Current Opinion in Psychiatry, 2016. 29 (1) : 32-38. https://doi.org/10.1097/yco.0000000000000219
- Schiele, M.A. and K. Domschke, Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes, Brain, and Behavior, 2017. 17 : p. 1-15. 10.1111/gbb.12423
- Beesdo-Baum, K. and S. Knappe, (201) Developmental epidemiology of anxiety disorders. Child and Adolescent Psychiatric Clinics of North America, 2012. 21 (3): p. 457-478. https://psycnet.apa.org/doi/10.1016/j.chc.2012.05.001
- Whiteford, H.A., L. Degenhardt, J. Rehm, A.J. Baxter, A.J. Ferrari, H.E. Erskine and T. Vos, Global Burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet, 2013. 382 (9904): p. 1575-1586. https://doi.org/10.1016/s0140-6736(13)61611-6
- American Psychiatric Association, Diagnostic and statistical manual of mental disorders (5th. Ed.). 2013, Washington, DC: APA.
- Bandelow, B., S. Michaelis and D. Wedekind, Treatment of anxiety disorders. Dialogues in clinical neuroscience, 2017. 19(2): p. 93-107. https://dx.doi.org/10.31887%2FDCNS.2017.19.2%2Fbbandelow
- Graham, S., C. Depp, E.E. Lee, C. Nebeker, X. Tu, H.C. Kim and D.V. Jeste, Artificial intelligence for mental health and mental illnesses: an overview. Current psychiatry reports, 2019. 21(11): 116. 10.1007/s11920-019-1094-0
- Wolfers, T., J.K. Buitelaar, C.F. Beckmann, B. Franke and A.F. Marquand, From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neuroscience & Biobehaviora, 2015. l57: p. 328-349. https://doi.org/10.1016/j.neubiorev.2015.08.001
- Cornblath, E.J., D.M. Lydon-Staley and D.S. Bassett DS, Harnessing networks and machine learning in neuropsychiatric care. Current opinion in neurobiology, 2019. 55: p. 32-39. 10.1016/j.conb.2018.12.010
- Garcia-Ceja, E., M. Riegler, T. Nordgreen, P. Jakobsen, K.J. Oedegaard and J. Tørresen, Mental health monitoring with multimodal sensing and machine learning: A survey. Pervasive and Mobile Computing, 2018. 51: p. 1-26. https://doi.org/10.1016/j.pmcj.2018.09.003
- Trumpff, C., A. Marsland, R.P. Sloan, B.A. Kaufman and M. Picard, Predictors of ccf-mtDNA reactivity to acute psychological stress identified using machine learning classifiers: A proof-of-concept . Psychoneuroendocrinology, 2019. 107: p. 82-92. 10.1016/j.psyneuen.2019.05.001
- Smets, E., P. Casale, U. Großekathöfer, B. Lamichhane, W. De Raedt, K. Bogaerts and C. Van Hoof , Comparison of machine learning techniques for psychophysiological stress detection. In International Symposium on Pervasive Computing Paradigms for Mental Health, 2015. 604: p. 13-22. Springer, Cham. 10.1007/978-3-319-32270-4_2
- Carpenter, K.L., P. Sprechmann, R. Calderbank, and G.S. Egger, Quantifying risk for anxiety disorders in preschool children: A machine learning approach. PloS one, 2016. 11(11) , e0165524 https://doi.org/10.1371/journal.pone.0165524
- Mellem, M.S., Y. Liu, H. Gonzalez, M. Kollada and W.J. Martin, Machine learning models identify multimodal measurements highly predictive of transdiagnostic symptom severity for mood, anhedonia, and anxiety. Biological Psychiatry Cogn Neurosci Neuroimaging, 2020. 5(1): p. 56-67. https://doi.org/10.1016/j.bpsc.2019.07.007
- Portugal, L.C., J. Schrouff, R. Stiffler, M. Bertocci, G. Bebko, H. Chase and J. Mourão-Mirandaae, Predicting anxiety from wholebrain activity patterns to emotional faces in young adults: a machine learning approach. NeuroImage: Clinical, 2018. 23: 1018. https://dx.doi.org/10.1016%2Fj.nicl.2019.101813
- Lueken, U., B. Straube, Y. Yang, T. Hahn, K. Beesdo-Baum, H.U. Wittchen and B. Pfleiderer, Separating depressive comorbidity from panic disorder: a combined functional magnetic resonance imaging and machine learning approach. Journal of affective disorders, 2015. 184: p. 182-192. https://doi.org/10.1016/j.jad.2015.05.052
- Månsson, K.N., Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning. Translational psychiatry, 2015. 5(3): e530. https://dx.doi.org/10.1038%2Ftp.2015.22
- Boeke, E.A., A.J. Holmes and E.A. Phelps, Toward Robust Anxiety Biomarkers: A Machine Learning Approach in a Large-Scale Sample. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019. 5(8): p. 799-807. https://doi.org/10.1016/j.bpsc.2019.05.018
- Chan, F.H., T.J. Barry, A.B. Chan and J.H. Hsiao, Understanding visual attention to face emotions in social anxiety using hidden Markov models. Cognition and Emotion, 2020. 34(8): p. 1704-1710. https://doi.org/10.1080/02699931.2020.1781599
- Júnior, É.D.M.S., I.C. Passos, J. Scott, G. Bristot, E. Scotton, L.S.T Mendes and G.A. Salum, Decoding rumination: A machine learning approach to a transdiagnostic sample of outpatients with anxiety, mood and psychotic disorders. Journal of psychiatric research, 2020. 121: p. 207-213. 10.1016/j.jpsychires.2019.12.005
- Tennenhouse, L.G., R.A. Marrie, C.N. Bernstei and L.M. Lix, Machine-learning models for depression and anxiety in individuals with immune-mediated inflammatory disease. Journal of Psychosomatic Research, 2020. 134:110126. 10.1016/j.jpsychores.2020.110126
- Bokma, W.A., P. Zhutovsky, E.J. Giltay, R.A. Schoevers, B.W. Penninx, A.L. Van Balkom and G.A. Van Wingen, Predicting the naturalistic course in anxiety disorders using clinical and biological markers: a machine learning approach. Psychological Medicine, 2020. 11: p. 1-11. https://doi.org/10.1017/S0033291720001658
- Xing, M., J.M. Fitzgerald and H. Klumpp, Classification of Social Anxiety Disorder With Support Vector Machine Analysis Using Neural Correlates of Social Signals of Threat. Frontiers in psychiatry, 2020. 11: 144. https://doi.org/10.3389/fpsyt.2020.00144
- Priyaa, A., S. Garga and N.P. Tiggaa, Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms. Procedia Computer Science, 2020, p. 1258-1267.
- Kumar, P., S. Garg and A. Garg, Assessment of Anxiety, Depression and Stress using Machine Learning Models. Procedia Computer Science, 2020. 171: p. 1989-1998. https://doi.org/10.1016/j.procs.2020.04.213
- S.V.Praveen, RajeshIttamalla, GerardDeepak, Analyzing Indian general public’s perspective on anxiety, stress and trauma during Covid-19 -A machine learning study of 840,000 tweets , Diabetes & Metabolic Syndrome: Clinical Research & Reviews, Volume 15, Issue 3, May–June 2021, Pages 667-671, https://doi.org/10.1016/j.dsx.2021.03.016
- Wessel A. van Eeden, Chuan Luo, Albert M. van Hemert, Ingrid V.E. Carlier, Brenda W. Penninx, Klaas J. Wardenaar, Holger Hoos, Erik J. Giltay, Predicting the 9-year course of mood and anxiety disorders with automated machine learning: A comparison between auto-sklearn, naïve Bayes classifier, and traditional logistic regression, Psychiatry Research, Volume 299, 2021, 113823, ISSN 0165-1781, https://doi.org/10.1016/j.psychres.2021.113823
- Matthew D. Nemesure, Michael V. Heinz, Raphael Huang & Nicholas C. Jacobson, Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence, Scientific Reports 11, 2021. https://doi.org/10.1038/s41598-021-81368-4
- Kyoung-SaeNaa, Seo-EunChob, Seong-JinChoa, Machine learning-based discrimination of panic disorder from other anxiety disorders, Journal of Affective Disorders, Volume 278, 1 January 2021, 1-4, https://doi.org/10.1016/j.jad.2020.09.027
- David Perpetuini, Antonio Maria Chiarelli, Daniela Cardone, Chiara Filippini, Sergio Rinella, Simona Massimino, Francesco Bianco, Valentina Bucciarelli, Vincenzo Vinciguerra, Piero Fallica, Vincenzo Perciavalle, Sabina Gallina, Sabrina Conoci, Arcangelo Merla, PeerJ, Prediction of state anxiety by machine learning applied to photoplethysmography data, 2021 Jan 15;9:e10448. doi: 10.7717/peerj.10448. PMID: 33520434; PMCID: PMC7812926
- Nicholas C.Jacobson, Matthew D.Nemesure, Using Artificial Intelligence to Predict Change in Depression and Anxiety Symptoms in a Digital Intervention: Evidence from a Transdiagnostic Randomized Controlled Trial, Psychiatry Research, Volume 295, 2021, 113618, ISSN 0165-1781, https://doi.org/10.1016/j.psychres.2020.113618
- Nicholas C. Jacobson, Damien Lekkas, Raphael Huang, Natalie Thomas, Deep learning paired with wearable passive sensing data predicts deterioration in anxiety disorder symptoms across 17–18 years, Journal of Affective Disorders, Volume 282, 2021, Pages 104-111, ISSN 0165-0327, https://doi.org/10.1016/j.jad.2020.12.086
- Kurban, H. (2021). Metin Madenciliği ile Tıbbi Tedavi Alanlarının Yakınlıklarının Ölçülmesi . Avrupa Bilim ve Teknoloji Dergisi , (21) , 518-526 . 10.31590/ejosat.833199