Research Article
BibTex RIS Cite

Saldırı Tespitinde Makine Öğrenmesi Yöntemlerinin Performans Analizi

Year 2021, Issue: 32, 107 - 112, 31.12.2021
https://doi.org/10.31590/ejosat.1045551

Abstract

İnternete olan ilgi son yıllarda inanılmaz derecede artmış ve artmaya devam etmektedir. Bu artışa birde salgın hastalık koşulları eklenince insan hayatını etkileyen her şeyi internet vasıtasıyla yapmaya odaklanılmıştır. İnternete olan ilgi nasıl arttıysa bu ilgiyi suiistimal etmek isteyen kişilerde ve suç ifa edebilecek olan durumdaki faaliyetlerde de artmış ve istikrarlı şekilde artmaya devam etmiştir. Organizasyonların ağ güvenliğini sağlaması çok daha zor hale gelmiştir. Saldırı ve suçlulara karşı ağ güvenliğini sağlamak için birçok farklı güvenlik sistemleri kullanılmaktadır. Saldırı Tespit Sistemleri (STS) ağ güvenliği için kullanılan güvenlik sistemlerden bir tanesidir. STS aynı zamanda akademik dünyada da oldukça ilgi gören konudur. Son yıllarda araştırmacılar daha verimli ve etkin bir STS ortaya koymak için birçok çalışma yapmıştır. Yapılan çalışmalarda bencmark veri seti olarak kullanılan veri setlerinin günümüz şartlarını taşımadığı ve değerlendirmelerde doğru sonuçları vermediği görülmüştür. Bu soruna çözüm olması için 2015 yılında yayınlanan UNSW-NB15 veri seti oluşturulmuştur. Bu çalışmanın amacı STS’yi daha verimli ve etkin hale getirmek için kullanılan makine öğrenmesi yöntemlerinin UNSW-NB15 veri seti kullanılarak incelenmesi ve karşılaştırılmasıdır. Bunu yaparken kullanılan Özellik Seçim yönteminin algoritma performanslarına olan etkisi de değerlendirilmiştir. Çalışma kapsamında, Orange aracını kullanarak makine öğrenmesi yöntemlerinin performansları karşılaştırıldı. Ayrıca elde edilen sonuçlar ile daha önce yapılmış çalışmalar karşılaştıırlmıştır.

References

  • Anon. n.d. “Statistics.” Retrieved August 13, 2021 (https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx). Ata, Oğuz, and Khalid Kadhim. 2018. “NETWORK INTRUSION DETECTION USING MACHINE LEARNING TECHNIQUES.” JOURNAL OF ENGINEERING SYSTEMS AND ARCHITECTURE Cilt 2(1):115–23.
  • Bisht, Prithvi, Neeraj Negi, Preeti Mishra, and Pushpanjali Chauhan. 2018. “A Comparative Study on Various Data Mining Tools for Intrusion Detection.” International Journal of Scientific & Engineering Research 9(5).
  • Chowdhury, Abdullahi, Gour Karmakar, and Joarder Kamruzzaman. 2019. “The Co-Evolution of Cloud and IoT Applications.” 213–34. doi: 10.4018/978-1-5225-7335-7.CH011.
  • Ethem, Alpaydin; 2015. “Introduction to Machine Learning Second Edition Adaptive Computation and Machine Learning.” Massachusetts Institute of Technology 41–470.
  • Fırlar, Talat. n.d. “AG GÜVENLİGi.” SAU Fen Bilimleri Ensitüsü Dergisi 7. Cilt 1. Sayı, 2003
  • Kaya, Çetin, and Oktay Yildiz. 2014. “Makine Öğrenmesi Teknikleriyle Saldırı Tespiti: Karşılaştırmalı Analiz.” Marmara Fen Bilimleri Dergisi 3:89–104. doi: 10.7240/mufbed.24684.
  • Khraisat, Ansam, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. 2019. “Survey of Intrusion Detection Systems: Techniques, Datasets and Challenges.” Cybersecurity 2019 2:1 2(1):1–22. doi: 10.1186/S42400-019-0038-7.
  • Kilincer, Ilhan Firat, Fatih Ertam, and Abdulkadir Sengur. 2021. “Machine Learning Methods for Cyber Security Intrusion Detection: Datasets and Comparative Study.” Computer Networks 188:107840. doi: 10.1016/J.COMNET.2021.107840.
  • Kocher, Geeta, and Gulshan Kumar. 2020. “PERFORMANCE ANALYSIS OF MACHINE LEARNING CLASSIFIERS FOR INTRUSION DETECTION USING UNSW-NB15 DATASET.” 31–40. doi: 10.5121/csit.2020.102004.
  • Liao, Hung Jen, Chun Hung Richard Lin, Ying Chih Lin, and Kuang Yuan Tung. 2013. “Intrusion Detection System: A Comprehensive Review.” Journal of Network and Computer Applications 36(1):16–24. doi: 10.1016/J.JNCA.2012.09.004.
  • Mebawondu, J. Olamantanmi, Olufunso D. Alowolodu, Jacob O. Mebawondu, and Adebayo O. Adetunmbi. 2020. “Network Intrusion Detection System Using Supervised Learning Paradigm.” Scientific African 9:e00497. doi: 10.1016/J.SCIAF.2020.E00497.
  • Moustafa, Nour, and Jill Slay. 2016. “The Evaluation of Network Anomaly Detection Systems: Statistical Analysis of the UNSW-NB15 Data Set and the Comparison with the KDD99 Data Set.” Http://Dx.Doi.Org/10.1080/19393555.2015.1125974 25(1–3):18–31. doi: 10.1080/19393555.2015.1125974.
  • Naik, Amrita, and Lilavati Samant. 2016. “Correlation Review of Classification Algorithm Using Data Mining Tool: WEKA, Rapidminer, Tanagra, Orange and Knime.” Procedia Computer Science 85:662–68. doi: 10.1016/J.PROCS.2016.05.251.
  • Sarkar, Subhadeep, Subarna Chatterjee, and Sudip Misra. 2018. “Assessment of the Suitability of Fog Computing in the Context of Internet of Things.” IEEE Transactions on Cloud Computing 6(1):46–59. doi: 10.1109/TCC.2015.2485206.
  • Sonule, Avinashr, Mukesh Kalla, Amit Jain, and D. S. Chouhan. 2020. “Unsw-Nb15 Dataset and Machine Learning Based Intrusion Detection Systems.” International Journal of Engineering and Advanced Technology (IJEAT) (9):2249–8958. doi: 10.35940/ijeat.C5809.029320.
  • Tsai, Chih Fong, Yu Feng Hsu, Chia Ying Lin, and Wei Yang Lin. 2009. “Intrusion Detection by Machine Learning: A Review.” Expert Systems with Applications 36(10):11994–0.
  • Zhiqiang, Liu, Ghulam Mohi-Ud-Din, Li Bing, Luo Jianchao, Zhu Ye, and Lin Zhijun. 2019. “Modeling Network Intrusion Detection System Using Feed-Forward Neural Network Using UNSW-NB15 Dataset.” Proceedings of 2019 the 7th International Conference on Smart Energy Grid Engineering, SEGE 2019 299–303. doi: 10.1109/SEGE.2019.8859773.

Performance Analysis of Machine Learning Methods in Intrusion Detection

Year 2021, Issue: 32, 107 - 112, 31.12.2021
https://doi.org/10.31590/ejosat.1045551

Abstract

Interest in the Internet has grown tremendously in recent years and continues to increase. When epidemic disease conditions are added to this increase, it is focused on doing everything that affects human life via the internet. Just as the interest in the Internet has increased, the number of people who want to abuse this interest has also increased in the number of attacks carried out over the Internet and in activities capable of committing crimes, and it has continued to increase steadily. It has become much more difficult for organizations to maintain network security. Many different security systems are used to provide network security against attacks and criminals. Intrusion Detection Systems (STS) is one of the security systems used for network security. STS is also a subject of great interest in the academic world. In recent years, researchers have done many studies to reveal a more efficient and effective STS. In the studies, it has been seen that the data sets used as the benchmark data set do not meet today's conditions and do not give the correct results in the evaluations. The UNSW-NB15 dataset, published in 2015, was created to solve this problem. The aim of this study is to examine and compare the machine learning methods used to make STS more efficient and effective using the UNSW-NB15 data set. Within the scope of the study, the performances of machine learning methods were compared using the Orange tool for the UNSW-NB15 dataset. In addition, performance evaluation was made with the results obtained and previous studies.

References

  • Anon. n.d. “Statistics.” Retrieved August 13, 2021 (https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx). Ata, Oğuz, and Khalid Kadhim. 2018. “NETWORK INTRUSION DETECTION USING MACHINE LEARNING TECHNIQUES.” JOURNAL OF ENGINEERING SYSTEMS AND ARCHITECTURE Cilt 2(1):115–23.
  • Bisht, Prithvi, Neeraj Negi, Preeti Mishra, and Pushpanjali Chauhan. 2018. “A Comparative Study on Various Data Mining Tools for Intrusion Detection.” International Journal of Scientific & Engineering Research 9(5).
  • Chowdhury, Abdullahi, Gour Karmakar, and Joarder Kamruzzaman. 2019. “The Co-Evolution of Cloud and IoT Applications.” 213–34. doi: 10.4018/978-1-5225-7335-7.CH011.
  • Ethem, Alpaydin; 2015. “Introduction to Machine Learning Second Edition Adaptive Computation and Machine Learning.” Massachusetts Institute of Technology 41–470.
  • Fırlar, Talat. n.d. “AG GÜVENLİGi.” SAU Fen Bilimleri Ensitüsü Dergisi 7. Cilt 1. Sayı, 2003
  • Kaya, Çetin, and Oktay Yildiz. 2014. “Makine Öğrenmesi Teknikleriyle Saldırı Tespiti: Karşılaştırmalı Analiz.” Marmara Fen Bilimleri Dergisi 3:89–104. doi: 10.7240/mufbed.24684.
  • Khraisat, Ansam, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. 2019. “Survey of Intrusion Detection Systems: Techniques, Datasets and Challenges.” Cybersecurity 2019 2:1 2(1):1–22. doi: 10.1186/S42400-019-0038-7.
  • Kilincer, Ilhan Firat, Fatih Ertam, and Abdulkadir Sengur. 2021. “Machine Learning Methods for Cyber Security Intrusion Detection: Datasets and Comparative Study.” Computer Networks 188:107840. doi: 10.1016/J.COMNET.2021.107840.
  • Kocher, Geeta, and Gulshan Kumar. 2020. “PERFORMANCE ANALYSIS OF MACHINE LEARNING CLASSIFIERS FOR INTRUSION DETECTION USING UNSW-NB15 DATASET.” 31–40. doi: 10.5121/csit.2020.102004.
  • Liao, Hung Jen, Chun Hung Richard Lin, Ying Chih Lin, and Kuang Yuan Tung. 2013. “Intrusion Detection System: A Comprehensive Review.” Journal of Network and Computer Applications 36(1):16–24. doi: 10.1016/J.JNCA.2012.09.004.
  • Mebawondu, J. Olamantanmi, Olufunso D. Alowolodu, Jacob O. Mebawondu, and Adebayo O. Adetunmbi. 2020. “Network Intrusion Detection System Using Supervised Learning Paradigm.” Scientific African 9:e00497. doi: 10.1016/J.SCIAF.2020.E00497.
  • Moustafa, Nour, and Jill Slay. 2016. “The Evaluation of Network Anomaly Detection Systems: Statistical Analysis of the UNSW-NB15 Data Set and the Comparison with the KDD99 Data Set.” Http://Dx.Doi.Org/10.1080/19393555.2015.1125974 25(1–3):18–31. doi: 10.1080/19393555.2015.1125974.
  • Naik, Amrita, and Lilavati Samant. 2016. “Correlation Review of Classification Algorithm Using Data Mining Tool: WEKA, Rapidminer, Tanagra, Orange and Knime.” Procedia Computer Science 85:662–68. doi: 10.1016/J.PROCS.2016.05.251.
  • Sarkar, Subhadeep, Subarna Chatterjee, and Sudip Misra. 2018. “Assessment of the Suitability of Fog Computing in the Context of Internet of Things.” IEEE Transactions on Cloud Computing 6(1):46–59. doi: 10.1109/TCC.2015.2485206.
  • Sonule, Avinashr, Mukesh Kalla, Amit Jain, and D. S. Chouhan. 2020. “Unsw-Nb15 Dataset and Machine Learning Based Intrusion Detection Systems.” International Journal of Engineering and Advanced Technology (IJEAT) (9):2249–8958. doi: 10.35940/ijeat.C5809.029320.
  • Tsai, Chih Fong, Yu Feng Hsu, Chia Ying Lin, and Wei Yang Lin. 2009. “Intrusion Detection by Machine Learning: A Review.” Expert Systems with Applications 36(10):11994–0.
  • Zhiqiang, Liu, Ghulam Mohi-Ud-Din, Li Bing, Luo Jianchao, Zhu Ye, and Lin Zhijun. 2019. “Modeling Network Intrusion Detection System Using Feed-Forward Neural Network Using UNSW-NB15 Dataset.” Proceedings of 2019 the 7th International Conference on Smart Energy Grid Engineering, SEGE 2019 299–303. doi: 10.1109/SEGE.2019.8859773.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Yasin Türkyılmaz 0000-0003-0150-9987

Arafat Şentürk 0000-0002-9005-3565

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Türkyılmaz, Y., & Şentürk, A. (2021). Saldırı Tespitinde Makine Öğrenmesi Yöntemlerinin Performans Analizi. Avrupa Bilim Ve Teknoloji Dergisi(32), 107-112. https://doi.org/10.31590/ejosat.1045551

Cited By

IoT security with blockchain: A review
The European Journal of Research and Development
https://doi.org/10.56038/ejrnd.v3i4.370