HCl Asit Çözeltisinde Sn-3Ag-0.5Cu Alaşımının Korozyon Kinetiği Üzerine İndiyum İlavesinin Etkisi
Year 2022,
Issue: 34, 28 - 33, 31.03.2022
Serkan Oguz
,
Ahmet Mustafa Erer
,
Yunus Türen
,
Hayrettin Ahlatcı
Abstract
Bu çalışmanın amacı potansiyodinamik polarizasyon indiyum ilaveli Sn-3Ag-0.5Cu alaşımının 1M HCl çözeltisinde korozyon davranışını araştırmaktır. Alaşım numunelerinin özellikleri SEM ve EDX analizleri ile incelenmiştir. SAC305 lehim alaşımına ağırlıkça % 0,5, 1 ve 2 ağırlıkça indiyum eklenmesiyle gösterilen polarizasyon analizleri, belirgin şekilde farklı korozyon potansiyellerine yol açmaz. Akımların neredeyse sabit olduğu gerçek bir pasivasyon bölgesi yerine yalancı pasifleştirme bölgesi gözlemlenir. Tarama aralığına göre, bu sözde pasif bölge bir yeniden etkinleştirme noktasına sahip değildir. Öte yandan, korozyon hızları, gümüşün ağırlıkça %0.5'lik indiyum ikamesinin korozyon hızının düşmesine neden olduğu bir model izler. Bununla birlikte, gümüşün indiyumla daha fazla değiştirilmesiyle korozyon hızı artar. Mikroyapı analiz sonuçlarına göre korozyon ürünlerinin oluşması ve kararlılıklarına sınırlar getiren boşluk ve gözenekli yapıların varlığını ortaya koyar.
References
- Abtew, M., & Selvaduray, G. (2000). Lead-free Solders in Microelectronics. Materials Science and Engineering: R: Reports, 27(5-6), 95-141. https://doi.org/10.1016/S0927-796X(00)00010-3
- Aziz, M. Z. H., Zainon, N., Mohamad, A. A., & Nazeri, M. F. M. (2020). Corrosion Investigation of Sn-0.7Cu Pb-Free Solder in Open-Circuit and Polarized Conditions. IOP Conference Series: Materials Science and Engineering, 957, 012012. https://doi.org/10.1088/1757-899X/957/1/012012
- Cheng, Y. L., Zhang, Z., Cao, F. H., Li, J. F., Zhang, J. Q., Wang, J. M., & Cao, C. N. (2004). A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corrosion Science, 46(7), 1649-1667. https://doi.org/10.1016/j.corsci.2003.10.005
- El-Daly, A. A., & Hammad, A. E. (2012). Enhancement of creep resistance and thermal behavior of eutectic Sn–Cu lead-free solder alloy by Ag and In-additions. Materials & Design, 40, 292-298. https://doi.org/10.1016/j.matdes.2012.04.007
- El-Daly, A. A., Swilem, Y., Makled, M. H., El-Shaarawy, M. G., & Abdraboh, A. M. (2009). Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys. Journal of Alloys and Compounds, 484(1-2), 134-142. https://doi.org/10.1016/j.jallcom.2009.04.108
- El-Taher, A. M., & Razzk, A. F. (2021). Controlling Ag3Sn Plate Formation and Its Effect on the Creep Resistance of Sn–3.0Ag–0.7Cu Lead-Free Solder by Adding Minor Alloying Elements Fe, Co, Te and Bi. Metals and Materials International, 27(10), 4294-4305. https://doi.org/10.1007/s12540-020-00856-w
- Erer, A. M., & Uyanik, O. (2019). Influence of Indium Content on the Wetting Behaviours of Sn-(3-x)Ag-0.5Cu-xIn Alloy Systems. Acta Physica Polonica A. https://doi.org/10.12963/APhysPolA.135.766
- Erer, A.M. (2021). Effect of bismuth addition on the corrosion dynamics of Sn-3Ag-0.5Cu solder alloy in Hydrochloric Acid Solution. International Journal of Innovative Engineering Applications, 5 (1), 40-44. https://doi.org/10.46460/ijiea.911862
- Hah, J., Kim, Y., Fernandez-Zelaia, P., Hwang, S., Lee, S., Christie, L., Houston, P., Melkote, S., Moon, K.-S., & Wong, C.-P. (2019). Comprehensive comparative analysis of microstructure of Sn–Ag–Cu (SAC) solder joints by traditional reflow and thermo-compression bonding (TCB) processes. Materialia, 6, 100327. https://doi.org/10.1016/j.mtla.2019.100327
- Han, Y. D., Gao, Y., Jing, H. Y., Wei, J., Zhao, L., & Xu, L. Y. (2020). A modified constitutive model of Ag nanoparticle-modified graphene/Sn–Ag–Cu/Cu solder joints. Materials Science and Engineering: A, 777, 139080. https://doi.org/10.1016/j.msea.2020.139080
- Jumali, N., Mohamad, A. A., & Mohd Nazeri, M. F. (2017). Corrosion Properties of Sn-9Zn Solder in Acidic Solution. Materials Science Forum, 888, 365-372. https://doi.org/10.4028/www.scientific.net/MSF.888.365
- Jumali, N., Zainol, M. H., Mohamad, A. A., & Nazeri, M. F. M. (t.y.). Effect of Al Additions on Corrosion Performance of Sn-9Zn Solder in Acidic Solution. 273, 5.
- Kang, H., Lee, M., Sun, D., Pae, S., & Park, J. (2015). Formation of octahedral corrosion products in Sn–Ag flip chip solder bump. Scripta Materialia, 108, 126-129. https://doi.org/10.1016/j.scriptamat.2015.06.034
- Kaushik, R. K., Batra, U., & Sharma, J. D. (2018). Aging induced structural and electrochemical corrosion behaviour of Sn-1.0Ag-0.5Cu and Sn-3.8Ag-0.7Cu solder alloys. Journal of Alloys and Compounds, 745, 446-454. https://doi.org/10.1016/j.jallcom.2018.01.292
- Liao, B., Cen, H., Chen, Z., & Guo, X. (2018). Corrosion behavior of Sn-3.0Ag-0.5Cu alloy under chlorine-containing thin electrolyte layers. Corrosion Science, 143, 347-361. https://doi.org/10.1016/j.corsci.2018.08.041
- Liu, J.-C., Park, S., Nagao, S., Nogi, M., Koga, H., Ma, J.-S., Zhang, G., & Suganuma, K. (2015a). The role of Zn precipitates and Cl− anions in pitting corrosion of Sn–Zn solder alloys. Corrosion Science, 92, 263-271. https://doi.org/10.1016/j.corsci.2014.12.014
- Liu, J.-C., Zhang, G., Ma, J.-S., & Suganuma, K. (2015b). Ti addition to enhance corrosion resistance of Sn–Zn solder alloy by tailoring microstructure. Journal of Alloys and Compounds, 644, 113-118. https://doi.org/10.1016/j.jallcom.2015.04.168
- Luo, T., Chen, Z., Hu, A., & Li, M. (2012). Study on melt properties, microstructure, tensile properties of low Ag content Sn–Ag–Zn Lead-free solders. Materials Science and Engineering: A, 556, 885-890. https://doi.org/10.1016/j.msea.2012.07.086
- Maeshima, T., Ikehata, H., Terui, K., & Sakamoto, Y. (2016). Effect of Ni to the Cu substrate on the interfacial reaction with Sn-Cu solder. Materials & Design, 103, 106-113. https://doi.org/10.1016/j.matdes.2016.04.068
- Mohanty, U. S., & Lin, K.-L. (2008). Electrochemical corrosion behaviour of Pb-free Sn–8.5Zn–0.05Al–XGa and Sn–3Ag–0.5Cu alloys in chloride containing aqueous solution. Corrosion Science, 50(9), 2437-2443. https://doi.org/10.1016/j.corsci.2008.06.042
- Mohd Nazeri, M. F., Yahaya, M. Z., Gursel, A., Cheani, F., Masri, M. N., & Mohamad, A. A. (2019). Corrosion characterization of Sn-Zn solder: A review. Soldering & Surface Mount Technology, 31(1), 52-67. https://doi.org/10.1108/SSMT-05-2018-0013
- Nazeri, M. F. M., & Mohamad, A. A. (2014). Corrosion measurement of Sn–Zn lead-free solders in 6 M KOH solution. Measurement, 47, 820-826. https://doi.org/10.1016/j.measurement.2013.10.002
- Nordin, N. I. M., Said, S. M., Ramli, R., Sabri, M. F. M., Sharif, N. M., Arifin, N. A. F. N. M., & Ibrahim, N. N. S. (2014). Microstructure of Sn–1Ag–0.5Cu solder alloy bearing Fe under salt spray test. Microelectronics Reliability, 54(9-10), 2044-2047. https://doi.org/10.1016/j.microrel.2014.07.068
- Osório, W. R., Spinelli, J. E., Afonso, C. R. M., Peixoto, L. C., & Garcia, A. (2011). Microstructure, corrosion behaviour and microhardness of a directionally solidified Sn–Cu solder alloy. Electrochimica Acta, 56(24), 8891-8899. https://doi.org/10.1016/j.electacta.2011.07.114
- Rosalbino, F., Angelini, E., Zanicchi, G., Carlini, R., & Marazza, R. (2009). Electrochemical corrosion study of Sn–3Ag–3Cu solder alloy in NaCl solution. Electrochimica Acta, 54(28), 7231-7235. https://doi.org/10.1016/j.electacta.2009.07.030
- Sayyadi, R., & Naffakh-Moosavy, H. (2018). Physical and mechanical properties of synthesized low Ag/lead-free Sn-Ag-Cu-xBi (x = 0, 1, 2.5, 5 wt%) solders. Materials Science and Engineering: A, 735, 367-377. https://doi.org/10.1016/j.msea.2018.08.071
- Silva, B. L., Reinhart, G., Nguyen-Thi, H., Mangelinck-Noël, N., Garcia, A., & Spinelli, J. E. (2015). Microstructural development and mechanical properties of a near-eutectic directionally solidified Sn–Bi solder alloy. Materials Characterization, 107, 43-53. https://doi.org/10.1016/j.matchar.2015.06.026
- Subri, N. W. B., Sarraf, M., Nasiri-Tabrizi, B., Ali, B., Mohd Sabri, M. F., Basirun, W. J., & Sukiman, N. L. (2020). Corrosion insight of iron and bismuth added Sn–1Ag–0.5Cu lead-free solder alloy. Corrosion Engineering, Science and Technology, 55(1), 35-47. https://doi.org/10.1080/1478422X.2019.1666458
- Uyanık, O., Erer, A. M., & Türen, Y. (2019). Effect of Indium on Wettability of Sn-2Ag-0,5Cu-1In Quaternary Solder Alloy on Cu Substrate. El-Cezeri Fen ve Mühendislik Dergisi. https://doi.org/10.31202/ecjse.441434
- Wang, H., Gao, Z., Liu, Y., Li, C., Ma, Z., & Yu, L. (2015). Evaluation of cooling rate on electrochemical behavior of Sn–0.3Ag–0.9Zn solder alloy in 3.5 wt% NaCl solution. Journal of Materials Science: Materials in Electronics, 26(1), 11-22. https://doi.org/10.1007/s10854-014-2356-6
- Xu, L. Y., Zhang, S. T., Jing, H. Y., Wang, L. X., Wei, J., Kong, X. C., & Han, Y. D. (2018). Indentation Size Effect on Ag Nanoparticle-Modified Graphene/Sn-Ag-Cu Solders. Journal of Electronic Materials, 47(1), 612-619. https://doi.org/10.1007/s11664-017-5822-0
- Yang, M., Ji, H., Wang, S., Ko, Y.-H., Lee, C.-W., Wu, J., & Li, M. (2016). Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrates during soldering. Journal of Alloys and Compounds, 679, 18-25. https://doi.org/10.1016/j.jallcom.2016.03.177
- Yoon, J.-W., Noh, B.-I., Kim, B.-K., Shur, C.-C., & Jung, S.-B. (2009). Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints. Journal of Alloys and Compounds, 486(1-2), 142-147. https://doi.org/10.1016/j.jallcom.2009.06.159
- Zou, S., Li, X., Dong, C., Ding, K., & Xiao, K. (2013). Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment. Electrochimica Acta, 114, 363-371. https://doi.org/10.1016/j.electacta.2013.10.051
The Effect Of Indium Addition on The Corrosion Kinetics of Sn–3Ag–0.5Cu Alloy In HCl Acid Solution
Year 2022,
Issue: 34, 28 - 33, 31.03.2022
Serkan Oguz
,
Ahmet Mustafa Erer
,
Yunus Türen
,
Hayrettin Ahlatcı
Abstract
The aim of this study is to investigate the corrosion behavior of potentiodynamic polarization indium added Sn-3Ag-0.5Cu alloy in 1M HCl solution. SEM and EDX analyses were examined the properties of the alloy samples. Polarization analyses showed by the addition of 0.5, 1, and 2 wt.% indium to the SAC305 solder alloy does not lead to notably different corrosion potentials. The pseudo-passivation region is observed instead of a true passivation region that currents are nearly constant. By the scanning interval, this pseudo-passive region does not have a reactivation point. On the other hand, corrosion rates follow a pattern in which 0.5% wt of indium substitution of silver causes the corrosion rate to decrease. However, with further silver replacement by indium, the rate of corrosion increases. According to the results of microstructure analysis, the formation of corrosion products and the existence of voids and porous structures limit their stability.
References
- Abtew, M., & Selvaduray, G. (2000). Lead-free Solders in Microelectronics. Materials Science and Engineering: R: Reports, 27(5-6), 95-141. https://doi.org/10.1016/S0927-796X(00)00010-3
- Aziz, M. Z. H., Zainon, N., Mohamad, A. A., & Nazeri, M. F. M. (2020). Corrosion Investigation of Sn-0.7Cu Pb-Free Solder in Open-Circuit and Polarized Conditions. IOP Conference Series: Materials Science and Engineering, 957, 012012. https://doi.org/10.1088/1757-899X/957/1/012012
- Cheng, Y. L., Zhang, Z., Cao, F. H., Li, J. F., Zhang, J. Q., Wang, J. M., & Cao, C. N. (2004). A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers. Corrosion Science, 46(7), 1649-1667. https://doi.org/10.1016/j.corsci.2003.10.005
- El-Daly, A. A., & Hammad, A. E. (2012). Enhancement of creep resistance and thermal behavior of eutectic Sn–Cu lead-free solder alloy by Ag and In-additions. Materials & Design, 40, 292-298. https://doi.org/10.1016/j.matdes.2012.04.007
- El-Daly, A. A., Swilem, Y., Makled, M. H., El-Shaarawy, M. G., & Abdraboh, A. M. (2009). Thermal and mechanical properties of Sn–Zn–Bi lead-free solder alloys. Journal of Alloys and Compounds, 484(1-2), 134-142. https://doi.org/10.1016/j.jallcom.2009.04.108
- El-Taher, A. M., & Razzk, A. F. (2021). Controlling Ag3Sn Plate Formation and Its Effect on the Creep Resistance of Sn–3.0Ag–0.7Cu Lead-Free Solder by Adding Minor Alloying Elements Fe, Co, Te and Bi. Metals and Materials International, 27(10), 4294-4305. https://doi.org/10.1007/s12540-020-00856-w
- Erer, A. M., & Uyanik, O. (2019). Influence of Indium Content on the Wetting Behaviours of Sn-(3-x)Ag-0.5Cu-xIn Alloy Systems. Acta Physica Polonica A. https://doi.org/10.12963/APhysPolA.135.766
- Erer, A.M. (2021). Effect of bismuth addition on the corrosion dynamics of Sn-3Ag-0.5Cu solder alloy in Hydrochloric Acid Solution. International Journal of Innovative Engineering Applications, 5 (1), 40-44. https://doi.org/10.46460/ijiea.911862
- Hah, J., Kim, Y., Fernandez-Zelaia, P., Hwang, S., Lee, S., Christie, L., Houston, P., Melkote, S., Moon, K.-S., & Wong, C.-P. (2019). Comprehensive comparative analysis of microstructure of Sn–Ag–Cu (SAC) solder joints by traditional reflow and thermo-compression bonding (TCB) processes. Materialia, 6, 100327. https://doi.org/10.1016/j.mtla.2019.100327
- Han, Y. D., Gao, Y., Jing, H. Y., Wei, J., Zhao, L., & Xu, L. Y. (2020). A modified constitutive model of Ag nanoparticle-modified graphene/Sn–Ag–Cu/Cu solder joints. Materials Science and Engineering: A, 777, 139080. https://doi.org/10.1016/j.msea.2020.139080
- Jumali, N., Mohamad, A. A., & Mohd Nazeri, M. F. (2017). Corrosion Properties of Sn-9Zn Solder in Acidic Solution. Materials Science Forum, 888, 365-372. https://doi.org/10.4028/www.scientific.net/MSF.888.365
- Jumali, N., Zainol, M. H., Mohamad, A. A., & Nazeri, M. F. M. (t.y.). Effect of Al Additions on Corrosion Performance of Sn-9Zn Solder in Acidic Solution. 273, 5.
- Kang, H., Lee, M., Sun, D., Pae, S., & Park, J. (2015). Formation of octahedral corrosion products in Sn–Ag flip chip solder bump. Scripta Materialia, 108, 126-129. https://doi.org/10.1016/j.scriptamat.2015.06.034
- Kaushik, R. K., Batra, U., & Sharma, J. D. (2018). Aging induced structural and electrochemical corrosion behaviour of Sn-1.0Ag-0.5Cu and Sn-3.8Ag-0.7Cu solder alloys. Journal of Alloys and Compounds, 745, 446-454. https://doi.org/10.1016/j.jallcom.2018.01.292
- Liao, B., Cen, H., Chen, Z., & Guo, X. (2018). Corrosion behavior of Sn-3.0Ag-0.5Cu alloy under chlorine-containing thin electrolyte layers. Corrosion Science, 143, 347-361. https://doi.org/10.1016/j.corsci.2018.08.041
- Liu, J.-C., Park, S., Nagao, S., Nogi, M., Koga, H., Ma, J.-S., Zhang, G., & Suganuma, K. (2015a). The role of Zn precipitates and Cl− anions in pitting corrosion of Sn–Zn solder alloys. Corrosion Science, 92, 263-271. https://doi.org/10.1016/j.corsci.2014.12.014
- Liu, J.-C., Zhang, G., Ma, J.-S., & Suganuma, K. (2015b). Ti addition to enhance corrosion resistance of Sn–Zn solder alloy by tailoring microstructure. Journal of Alloys and Compounds, 644, 113-118. https://doi.org/10.1016/j.jallcom.2015.04.168
- Luo, T., Chen, Z., Hu, A., & Li, M. (2012). Study on melt properties, microstructure, tensile properties of low Ag content Sn–Ag–Zn Lead-free solders. Materials Science and Engineering: A, 556, 885-890. https://doi.org/10.1016/j.msea.2012.07.086
- Maeshima, T., Ikehata, H., Terui, K., & Sakamoto, Y. (2016). Effect of Ni to the Cu substrate on the interfacial reaction with Sn-Cu solder. Materials & Design, 103, 106-113. https://doi.org/10.1016/j.matdes.2016.04.068
- Mohanty, U. S., & Lin, K.-L. (2008). Electrochemical corrosion behaviour of Pb-free Sn–8.5Zn–0.05Al–XGa and Sn–3Ag–0.5Cu alloys in chloride containing aqueous solution. Corrosion Science, 50(9), 2437-2443. https://doi.org/10.1016/j.corsci.2008.06.042
- Mohd Nazeri, M. F., Yahaya, M. Z., Gursel, A., Cheani, F., Masri, M. N., & Mohamad, A. A. (2019). Corrosion characterization of Sn-Zn solder: A review. Soldering & Surface Mount Technology, 31(1), 52-67. https://doi.org/10.1108/SSMT-05-2018-0013
- Nazeri, M. F. M., & Mohamad, A. A. (2014). Corrosion measurement of Sn–Zn lead-free solders in 6 M KOH solution. Measurement, 47, 820-826. https://doi.org/10.1016/j.measurement.2013.10.002
- Nordin, N. I. M., Said, S. M., Ramli, R., Sabri, M. F. M., Sharif, N. M., Arifin, N. A. F. N. M., & Ibrahim, N. N. S. (2014). Microstructure of Sn–1Ag–0.5Cu solder alloy bearing Fe under salt spray test. Microelectronics Reliability, 54(9-10), 2044-2047. https://doi.org/10.1016/j.microrel.2014.07.068
- Osório, W. R., Spinelli, J. E., Afonso, C. R. M., Peixoto, L. C., & Garcia, A. (2011). Microstructure, corrosion behaviour and microhardness of a directionally solidified Sn–Cu solder alloy. Electrochimica Acta, 56(24), 8891-8899. https://doi.org/10.1016/j.electacta.2011.07.114
- Rosalbino, F., Angelini, E., Zanicchi, G., Carlini, R., & Marazza, R. (2009). Electrochemical corrosion study of Sn–3Ag–3Cu solder alloy in NaCl solution. Electrochimica Acta, 54(28), 7231-7235. https://doi.org/10.1016/j.electacta.2009.07.030
- Sayyadi, R., & Naffakh-Moosavy, H. (2018). Physical and mechanical properties of synthesized low Ag/lead-free Sn-Ag-Cu-xBi (x = 0, 1, 2.5, 5 wt%) solders. Materials Science and Engineering: A, 735, 367-377. https://doi.org/10.1016/j.msea.2018.08.071
- Silva, B. L., Reinhart, G., Nguyen-Thi, H., Mangelinck-Noël, N., Garcia, A., & Spinelli, J. E. (2015). Microstructural development and mechanical properties of a near-eutectic directionally solidified Sn–Bi solder alloy. Materials Characterization, 107, 43-53. https://doi.org/10.1016/j.matchar.2015.06.026
- Subri, N. W. B., Sarraf, M., Nasiri-Tabrizi, B., Ali, B., Mohd Sabri, M. F., Basirun, W. J., & Sukiman, N. L. (2020). Corrosion insight of iron and bismuth added Sn–1Ag–0.5Cu lead-free solder alloy. Corrosion Engineering, Science and Technology, 55(1), 35-47. https://doi.org/10.1080/1478422X.2019.1666458
- Uyanık, O., Erer, A. M., & Türen, Y. (2019). Effect of Indium on Wettability of Sn-2Ag-0,5Cu-1In Quaternary Solder Alloy on Cu Substrate. El-Cezeri Fen ve Mühendislik Dergisi. https://doi.org/10.31202/ecjse.441434
- Wang, H., Gao, Z., Liu, Y., Li, C., Ma, Z., & Yu, L. (2015). Evaluation of cooling rate on electrochemical behavior of Sn–0.3Ag–0.9Zn solder alloy in 3.5 wt% NaCl solution. Journal of Materials Science: Materials in Electronics, 26(1), 11-22. https://doi.org/10.1007/s10854-014-2356-6
- Xu, L. Y., Zhang, S. T., Jing, H. Y., Wang, L. X., Wei, J., Kong, X. C., & Han, Y. D. (2018). Indentation Size Effect on Ag Nanoparticle-Modified Graphene/Sn-Ag-Cu Solders. Journal of Electronic Materials, 47(1), 612-619. https://doi.org/10.1007/s11664-017-5822-0
- Yang, M., Ji, H., Wang, S., Ko, Y.-H., Lee, C.-W., Wu, J., & Li, M. (2016). Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrates during soldering. Journal of Alloys and Compounds, 679, 18-25. https://doi.org/10.1016/j.jallcom.2016.03.177
- Yoon, J.-W., Noh, B.-I., Kim, B.-K., Shur, C.-C., & Jung, S.-B. (2009). Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints. Journal of Alloys and Compounds, 486(1-2), 142-147. https://doi.org/10.1016/j.jallcom.2009.06.159
- Zou, S., Li, X., Dong, C., Ding, K., & Xiao, K. (2013). Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment. Electrochimica Acta, 114, 363-371. https://doi.org/10.1016/j.electacta.2013.10.051