Research Article
BibTex RIS Cite

Yakıt Hücreli Araçlarda Enerji Yönetim Stratejileri ve Optimizasyon Hedeflerinin İncelenmesi

Year 2022, Issue: 34, 80 - 86, 31.03.2022
https://doi.org/10.31590/ejosat.1070927

Abstract

Günümüzde enerji kullanımı çerçevesinde çevre kirliliği ön plana çıkmaktadır. Enerji kullanımı esnasında meydana gelen ve ekosisteme zarar veren bu kirlilikler, fosil yakıtların kullanımı oluşmaktadır. Çevre kirliliğinin sebepleri incelendiğinde; fosil yakıt kullanan içten yanmalı motorlu araçlardan kaynaklı emisyon gazlarının etkisinin önemli düzeyde olduğu görülmektedir. Bu nedenle, enerjinin verimli kullanımı ve çevresel faktörler dikkate alındığında yakıt hücreli elektrikli araçlar giderek yaygınlaşmaktadır. İçten yanmalı motorlu araçlar kadar hızlı ivmelenme beklentisinden dolayı bu araçlarda yakıt hücreleri batarya ve süperkapasitör ile birlikte kullanılmaktadır. Ancak bu araçlarda farklı güç kaynaklarının birlikte kullanımı ile karmaşık güç akışını yönetmek için enerji yönetim sistemlerine ihtiyaç duyulmaktadır. Enerji yönetimi stratejileri ise maksimum verim koşulları dikkate alınarak optimizasyon hedeflerine göre belirlenmektedir.
Bu çalışmada, yakıt hücreli araçların farklı enerji yönetim stratejileri incelenmiş olup; enerji yönetim sistemleri belirlenen üç hedef açısından detaylı olarak değerlendirilmiştir. Yapılan çalışma sonucu elde edilen bulgular, enerji yönetim sistemleri ve optimizasyon çalışmalarını konu alan bilimsel ve sektörel faaliyetler için önem arz etmektedir.

References

  • Sorlei, I. S., Bizon, N., Thounthong, P., Varlam, M., Carcadea, E., Culcer, M., ... & Raceanu, M. (2021). Fuel cell electric vehicles—A brief review of current topologies and energy management strategies. Energies, 14(1), 252.
  • Panday, A., & Bansal, H. O. (2014). A review of optimal energy management strategies for hybrid electric vehicle. International Journal of Vehicular Technology, 2014.
  • Sulaiman, N., Hannan, M. A., Mohamed, A., Ker, P. J., Majlan, E. H., & Daud, W. W. (2018). Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations. Applied energy, 228, 2061-2079.
  • Xu, L., Li, J., Ouyang, M., Hua, J., & Yang, G. (2014). Multi-mode control strategy for fuel cell electric vehicles regarding fuel economy and durability. International Journal of Hydrogen Energy, 39(5), 2374-2389.
  • Teng, T., Zhang, X., Dong, H., & Xue, Q. (2020). A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle. International Journal of Hydrogen Energy, 45(39), 20293-20303.
  • Li, H., Ravey, A., N'Diaye, A., & Djerdir, A. (2017, December). A review of energy management strategy for fuel cell hybrid electric vehicle. In 2017 IEEE Vehicle Power and Propulsion Conference (VPPC) (pp. 1-6). IEEE.
  • İnci, M., Büyük, M., Demir, M. H., & İlbey, G. (2021). A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects. Renewable and Sustainable Energy Reviews, 137, 110648.
  • Pollet, B. G., Staffell, I., & Shang, J. L. (2012). Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochimica Acta, 84, 235-249.
  • Aouzellag, H., Ghedamsi, K., & Aouzellag, D. (2015). Energy management and fault tolerant control strategies for fuel cell/ultra-capacitor hybrid electric vehicles to enhance autonomy, efficiency and life time of the fuel cell system. International journal of hydrogen energy, 40(22), 7204-7213.
  • Lachhab, I., & Krichen, L. (2014). An improved energy management strategy for FC/UC hybrid electric vehicles propelled by motor-wheels. International journal of hydrogen energy, 39(1), 571-581.
  • Li, Q., Yang, H., Han, Y., Li, M., & Chen, W. (2016). A state machine strategy based on droop control for an energy management system of PEMFC-battery-supercapacitor hybrid tramway. International Journal of Hydrogen Energy, 41(36), 16148-16159.
  • Yun, H., Liu, S., Zhao, Y., Xie, J., Liu, C., Hou, Z., & Wang, K. (2015). Energy management for fuel cell hybrid vehicles based on a stiffness coefficient model. International Journal of Hydrogen Energy, 40(1), 633-641.
  • Li, Q., Chen, W., Li, Y., Liu, S., & Huang, J. (2012). Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic. International Journal of Electrical Power & Energy Systems, 43(1), 514-525.
  • Mohammedi, M., Kraa, O., Becherif, M., Aboubou, A., Ayad, M. Y., & Bahri, M. (2014). Fuzzy logic and passivity-based controller applied to electric vehicle using fuel cell and supercapacitors hybrid source. Energy Procedia, 50, 619-626.
  • Hwang, J. J., Hu, J. S., & Lin, C. H. (2015). Design of a range extension strategy for power decentralized fuel cell/battery electric vehicles. International Journal of Hydrogen Energy, 40(35), 11704-11712.
  • Saib, S., Hamouda, Z., & Marouani, K. (2017, October). Energy management in a fuel cell hybrid electric vehicle using a fuzzy logic approach. In 2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B) (pp. 1-4). IEEE.
  • Xu, L., Li, J., Ouyang, M., Hua, J., & Yang, G. (2014). Multi-mode control strategy for fuel cell electric vehicles regarding fuel economy and durability. International Journal of Hydrogen Energy, 39(5), 2374-2389.
  • Zheng, C. H., Xu, G. Q., Park, Y. I., Lim, W. S., & Cha, S. W. (2014). Prolonging fuel cell stack lifetime based on Pontryagin's Minimum Principle in fuel cell hybrid vehicles and its economic influence evaluation. Journal of Power Sources, 248, 533-544.
  • Ettihir, K., Boulon, L., & Agbossou, K. (2016). Optimization-based energy management strategy for a fuel cell/battery hybrid power system. Applied Energy, 163, 142-153.
  • Tian, H., Wang, X., Lu, Z., Huang, Y., & Tian, G. (2017). Adaptive fuzzy logic energy management strategy based on reasonable SOC reference curve for online control of plug-in hybrid electric city bus. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1607-1617.
  • Han, J., Park, Y., & Park, Y. S. (2012). A novel updating method of equivalent factor in ECMS for prolonging the lifetime of battery in fuel cell hybrid electric vehicle. IFAC Proceedings Volumes, 45(30), 227-232.
  • Geng, B., Mills, J. K., & Sun, D. (2011). Two-stage energy management control of fuel cell plug-in hybrid electric vehicles considering fuel cell longevity. IEEE Transactions on vehicular technology, 61(2), 498-508.
  • Aiteur, I. E., Vlad, C., & Godoy, E. (2015, October). Energy management and control of a fuel cell/supercapacitor multi-source system for electric vehicles. In 2015 19th International Conference on System Theory, Control and Computing (ICSTCC) (pp. 797-802). IEEE.
  • Zhang, S., Luo, Y., Li, K., & Wang, J. (2017, May). Predictive energy management strategy for fully electric vehicles based on hybrid model predictive control. In 2017 American Control Conference (ACC) (pp. 3625-3630). IEEE.
  • Torreglosa, J. P., Garcia, P., Fernández, L. M., & Jurado, F. (2013). Predictive control for the energy management of a fuel-cell–battery–supercapacitor tramway. IEEE Transactions on Industrial Informatics, 10(1), 276-285.
  • Fares, D., Chedid, R., Panik, F., Karaki, S., & Jabr, R. (2015). Dynamic programming technique for optimizing fuel cell hybrid vehicles. International Journal of Hydrogen Energy, 40(24), 7777-7790.
  • Zhou, W., Yang, L., Cai, Y., & Ying, T. (2018). Dynamic programming for New Energy Vehicles based on their work modes part I: Electric Vehicles and Hybrid Electric Vehicles. Journal of power sources, 406, 151-166.
  • Martel, F., Kelouwani, S., Dubé, Y., & Agbossou, K. (2015). Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles. Journal of Power Sources, 274, 367-381.
  • Martel, F., Dubé, Y., Kelouwani, S., Jaguemont, J., & Agbossou, K. (2016). Long-term assessment of economic plug-in hybrid electric vehicle battery lifetime degradation management through near optimal fuel cell load sharing. Journal of Power Sources, 318, 270-282.
  • Odeim, F., Roes, J., & Heinzel, A. (2015). Power management optimization of an experimental fuel cell/battery/supercapacitor hybrid system. Energies, 8(7), 6302-6327.
  • Fernández, R. Á., Caraballo, S. C., Cilleruelo, F. B., & Lozano, J. A. (2018). Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms. Renewable and sustainable energy reviews, 81, 655-668.
  • Kandi Dayeni, M., & Soleymani, M. (2016). Intelligent energy management of a fuel cell vehicle based on traffic condition recognition. Clean Technologies and Environmental Policy, 18(6), 1945-1960.
  • Habib, M., Khoucha, F., Benbouzid, M. E. H., & Kheloui, A. (2015). Rule-Based Energy Management Strategy Optimized Using PSO for Fuel Cell/Battery Electric Vehicle.

Investigation of Energy Management Strategies and Optimization Targets in Fuel Cell Vehicles

Year 2022, Issue: 34, 80 - 86, 31.03.2022
https://doi.org/10.31590/ejosat.1070927

Abstract

Today, environmental pollution comes to the fore in the framework of energy use. These pollutions, which occur during the use of energy and harm the ecosystem, are caused by the use of fossil fuels. When the causes of environmental pollution are examined; It is seen that the effect of emission gases originating from internal combustion engine vehicles using fossil fuels is at a significant level. For this reason, fuel cell electric vehicles are becoming increasingly common, considering the efficient use of energy and environmental factors. Due to the expectation of acceleration as fast as internal combustion engine vehicles, fuel cells are used with batteries and supercapacitors in these vehicles. However, energy management systems are needed to manage complex power flow with the use of different power sources together in these vehicles. Energy management strategies, on the other hand, are determined according to optimization targets, taking into account the maximum efficiency conditions.
In this study, different energy management strategies of fuel cell vehicles have been examined; energy management systems were evaluated in detail in terms of three objectives. The findings obtained as a result of the study are important for scientific and sectoral activities on energy management systems and optimization studies.

References

  • Sorlei, I. S., Bizon, N., Thounthong, P., Varlam, M., Carcadea, E., Culcer, M., ... & Raceanu, M. (2021). Fuel cell electric vehicles—A brief review of current topologies and energy management strategies. Energies, 14(1), 252.
  • Panday, A., & Bansal, H. O. (2014). A review of optimal energy management strategies for hybrid electric vehicle. International Journal of Vehicular Technology, 2014.
  • Sulaiman, N., Hannan, M. A., Mohamed, A., Ker, P. J., Majlan, E. H., & Daud, W. W. (2018). Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations. Applied energy, 228, 2061-2079.
  • Xu, L., Li, J., Ouyang, M., Hua, J., & Yang, G. (2014). Multi-mode control strategy for fuel cell electric vehicles regarding fuel economy and durability. International Journal of Hydrogen Energy, 39(5), 2374-2389.
  • Teng, T., Zhang, X., Dong, H., & Xue, Q. (2020). A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle. International Journal of Hydrogen Energy, 45(39), 20293-20303.
  • Li, H., Ravey, A., N'Diaye, A., & Djerdir, A. (2017, December). A review of energy management strategy for fuel cell hybrid electric vehicle. In 2017 IEEE Vehicle Power and Propulsion Conference (VPPC) (pp. 1-6). IEEE.
  • İnci, M., Büyük, M., Demir, M. H., & İlbey, G. (2021). A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects. Renewable and Sustainable Energy Reviews, 137, 110648.
  • Pollet, B. G., Staffell, I., & Shang, J. L. (2012). Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects. Electrochimica Acta, 84, 235-249.
  • Aouzellag, H., Ghedamsi, K., & Aouzellag, D. (2015). Energy management and fault tolerant control strategies for fuel cell/ultra-capacitor hybrid electric vehicles to enhance autonomy, efficiency and life time of the fuel cell system. International journal of hydrogen energy, 40(22), 7204-7213.
  • Lachhab, I., & Krichen, L. (2014). An improved energy management strategy for FC/UC hybrid electric vehicles propelled by motor-wheels. International journal of hydrogen energy, 39(1), 571-581.
  • Li, Q., Yang, H., Han, Y., Li, M., & Chen, W. (2016). A state machine strategy based on droop control for an energy management system of PEMFC-battery-supercapacitor hybrid tramway. International Journal of Hydrogen Energy, 41(36), 16148-16159.
  • Yun, H., Liu, S., Zhao, Y., Xie, J., Liu, C., Hou, Z., & Wang, K. (2015). Energy management for fuel cell hybrid vehicles based on a stiffness coefficient model. International Journal of Hydrogen Energy, 40(1), 633-641.
  • Li, Q., Chen, W., Li, Y., Liu, S., & Huang, J. (2012). Energy management strategy for fuel cell/battery/ultracapacitor hybrid vehicle based on fuzzy logic. International Journal of Electrical Power & Energy Systems, 43(1), 514-525.
  • Mohammedi, M., Kraa, O., Becherif, M., Aboubou, A., Ayad, M. Y., & Bahri, M. (2014). Fuzzy logic and passivity-based controller applied to electric vehicle using fuel cell and supercapacitors hybrid source. Energy Procedia, 50, 619-626.
  • Hwang, J. J., Hu, J. S., & Lin, C. H. (2015). Design of a range extension strategy for power decentralized fuel cell/battery electric vehicles. International Journal of Hydrogen Energy, 40(35), 11704-11712.
  • Saib, S., Hamouda, Z., & Marouani, K. (2017, October). Energy management in a fuel cell hybrid electric vehicle using a fuzzy logic approach. In 2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B) (pp. 1-4). IEEE.
  • Xu, L., Li, J., Ouyang, M., Hua, J., & Yang, G. (2014). Multi-mode control strategy for fuel cell electric vehicles regarding fuel economy and durability. International Journal of Hydrogen Energy, 39(5), 2374-2389.
  • Zheng, C. H., Xu, G. Q., Park, Y. I., Lim, W. S., & Cha, S. W. (2014). Prolonging fuel cell stack lifetime based on Pontryagin's Minimum Principle in fuel cell hybrid vehicles and its economic influence evaluation. Journal of Power Sources, 248, 533-544.
  • Ettihir, K., Boulon, L., & Agbossou, K. (2016). Optimization-based energy management strategy for a fuel cell/battery hybrid power system. Applied Energy, 163, 142-153.
  • Tian, H., Wang, X., Lu, Z., Huang, Y., & Tian, G. (2017). Adaptive fuzzy logic energy management strategy based on reasonable SOC reference curve for online control of plug-in hybrid electric city bus. IEEE Transactions on Intelligent Transportation Systems, 19(5), 1607-1617.
  • Han, J., Park, Y., & Park, Y. S. (2012). A novel updating method of equivalent factor in ECMS for prolonging the lifetime of battery in fuel cell hybrid electric vehicle. IFAC Proceedings Volumes, 45(30), 227-232.
  • Geng, B., Mills, J. K., & Sun, D. (2011). Two-stage energy management control of fuel cell plug-in hybrid electric vehicles considering fuel cell longevity. IEEE Transactions on vehicular technology, 61(2), 498-508.
  • Aiteur, I. E., Vlad, C., & Godoy, E. (2015, October). Energy management and control of a fuel cell/supercapacitor multi-source system for electric vehicles. In 2015 19th International Conference on System Theory, Control and Computing (ICSTCC) (pp. 797-802). IEEE.
  • Zhang, S., Luo, Y., Li, K., & Wang, J. (2017, May). Predictive energy management strategy for fully electric vehicles based on hybrid model predictive control. In 2017 American Control Conference (ACC) (pp. 3625-3630). IEEE.
  • Torreglosa, J. P., Garcia, P., Fernández, L. M., & Jurado, F. (2013). Predictive control for the energy management of a fuel-cell–battery–supercapacitor tramway. IEEE Transactions on Industrial Informatics, 10(1), 276-285.
  • Fares, D., Chedid, R., Panik, F., Karaki, S., & Jabr, R. (2015). Dynamic programming technique for optimizing fuel cell hybrid vehicles. International Journal of Hydrogen Energy, 40(24), 7777-7790.
  • Zhou, W., Yang, L., Cai, Y., & Ying, T. (2018). Dynamic programming for New Energy Vehicles based on their work modes part I: Electric Vehicles and Hybrid Electric Vehicles. Journal of power sources, 406, 151-166.
  • Martel, F., Kelouwani, S., Dubé, Y., & Agbossou, K. (2015). Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles. Journal of Power Sources, 274, 367-381.
  • Martel, F., Dubé, Y., Kelouwani, S., Jaguemont, J., & Agbossou, K. (2016). Long-term assessment of economic plug-in hybrid electric vehicle battery lifetime degradation management through near optimal fuel cell load sharing. Journal of Power Sources, 318, 270-282.
  • Odeim, F., Roes, J., & Heinzel, A. (2015). Power management optimization of an experimental fuel cell/battery/supercapacitor hybrid system. Energies, 8(7), 6302-6327.
  • Fernández, R. Á., Caraballo, S. C., Cilleruelo, F. B., & Lozano, J. A. (2018). Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms. Renewable and sustainable energy reviews, 81, 655-668.
  • Kandi Dayeni, M., & Soleymani, M. (2016). Intelligent energy management of a fuel cell vehicle based on traffic condition recognition. Clean Technologies and Environmental Policy, 18(6), 1945-1960.
  • Habib, M., Khoucha, F., Benbouzid, M. E. H., & Kheloui, A. (2015). Rule-Based Energy Management Strategy Optimized Using PSO for Fuel Cell/Battery Electric Vehicle.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ceyda Kök 0000-0002-5536-3488

Süha Orçun Mert 0000-0002-7721-1629

Early Pub Date January 30, 2022
Publication Date March 31, 2022
Published in Issue Year 2022 Issue: 34

Cite

APA Kök, C., & Mert, S. O. (2022). Yakıt Hücreli Araçlarda Enerji Yönetim Stratejileri ve Optimizasyon Hedeflerinin İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(34), 80-86. https://doi.org/10.31590/ejosat.1070927