Research Article
BibTex RIS Cite

Karmaşık Jeoloji ve Topografyaya Sahip Alanlarda Sentinel-2A Uydu Görüntülerinin Performansı Üzerine Bir Örnek Çalışma: Koyulhisar (Sivas-Türkiye)

Year 2022, Issue: 34, 387 - 395, 31.03.2022
https://doi.org/10.31590/ejosat.1082487

Abstract

Bu çalışma, Sentinel 2A multispektral uydu görüntüsü kullanılarak jeolojik özelliklerin ortaya çıkarılmasına yönelik gerçekleştirilmiştir. Sivas ili Koyulhisar ilçesi sınırları içerisinde kalan çalışma alanında sedimanter ve volkanik kayaçlar yüzeylemektedir. Ayrıca, çalışma alanı, Türkiye’nin en önemli aktif fay zonlarından bir tanesi olan Kuzey Anadolu Fay Zonu (NAFZ) üzerinde konumlanmaktadır. Sarp ve engebeli topografyaya sahip olan bu alanda heyelan riski taşıyan birçok alan mevcuttur. Bu nedenle, çalışma alanının jeolojik özelliklerinin ortaya çıkarılması oldukça önemlidir. Bu çalışmada, bant oranlama, minimum gürültü fraksiyonu (MNF) ve maksimum olabilirlik sınıflandırması (MLC) gibi uzaktan algılama teknikleri kullanılmıştır. Elde edilen sonuçlarda, mevcut jeolojik harita içerisinde formasyon ve birim sınırlarının gözden geçirilmesi ve yeniden çizilmesini gerektirecek sonuçlar elde edilmiştir.

Supporting Institution

Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma ve Projeler Birimi

Project Number

M-722

Thanks

Bu araştırma Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma ve Projeler birimi tarafından M-722 nolu proje olarak desteklenmiştir.

References

  • F. A. Kruse, J. W. Boardman, and J. F. Huntington, ‘Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping’, IEEE Trans. Geosci. Remote Sens., 2003.
  • W. Ge, Q. Cheng, Y. Tang, L. Jing, and C. Gao, ‘Lithological classification using Sentinel-2A data in the Shibanjing ophiolite complex in Inner Mongolia, China’, Remote Sens., 2018.
  • F. D. Van der Meer, H. M. A. van der Werff, and F. J. A. van Ruitenbeek, ‘Potential of ESA’s Sentinel-2 for geological applications’, Remote Sens. Environ., 2014.
  • H. van der Werff and F. van der Meer, ‘Sentinel-2 for mapping iron absorption feature parameters’, Remote Sens., 2015.
  • Z. Malenovský et al., ‘Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land’, Remote Sens. Environ., 2012.
  • K. Richter, C. Atzberger, F. Vuolo, P. Weihs, and G. D’urso, ‘Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize’, Can. J. Remote Sens., 2009.
  • C. Atzberger and K. Richter, ‘Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery’, Remote Sens. Environ., 2012.
  • J. G. P. W. Clevers and A. A. Gitelson, ‘Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on sentinel-2 and-3’, Int. J. Appl. Earth Obs. Geoinf., 2013.
  • K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, ‘First experiences in mapping lakewater quality parameters with sentinel-2 MSI imagery’, Remote Sens., 2016.
  • D. Stratoulias, H. Balzter, O. Sykioti, A. Zlinszky, and V. R. Tóth, ‘Evaluating sentinel-2 for lakeshore habitat mapping based on airborne hyperspectral data’, Sensors (Switzerland), 2015.
  • M. Immitzer, F. Vuolo, and C. Atzberger, ‘First experience with Sentinel-2 data for crop and tree species classifications in central Europe’, Remote Sens., 2016.
  • M. S. Salama, M. Radwan, and R. van der Velde, ‘A hydro-optical model for deriving water quality variables from satellite images (HydroSat): A case study of the Nile River demonstrating the future Sentinel-2 capabilities’, Phys. Chem. Earth, 2012.
  • J. Hedley, C. Roelfsema, B. Koetz, and S. Phinn, ‘Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection’, Remote Sens. Environ., 2012.
  • H. van der Werff and F. van der Meer, ‘Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing’, Remote Sens., 2016.
  • A. El Atillah, Z. E. A. El Morjani, and M. Souhassou, ‘Use of the Sentinel-2A Multispectral Image for Litho-Structural and Alteration Mapping in Al Glo’a Map Sheet (1/50,000) (Bou Azzer-El Graara Inlier, Central Anti-Atlas, Morocco)’, Artif. Satell., 2019.
  • B. Hu, Y. Xu, B. Wan, X. Wu, and G. Yi, ‘Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China’, Ore Geol. Rev., 2018.
  • J. Lin, R. Wang, B. Zhao, and S. Cheng, ‘A comprehensive scheme for lithological mapping using Sentinel-2A and ASTER GDEM in weathered and vegetated coastal zone, Southern China’, Open Geosci., 2019.
  • M. Karaman, ‘Grafit Cevherleşmelerinin Sentinel-2 Uydu Görüntülerinden Belirlenmesinde En Uygun Bant Kombinasyonları’, Avrupa Bilim ve Teknol. Derg., vol. 25, pp. 749–757, 2021.
  • H. A. Baran, ‘Hakkâri ili baz metal yataklarının uzaktan algılama ile belirlenmesi’, Gümüşhane Fen Bilim. Enstitüsü Derg., vol. 11, no. 2, pp. 339–347, 2021.
  • C. Zabcı, ‘Çok bantlı Landsat 8-OLI ve Sentinel-2A MSI uydu görüntülerinin karşılaştırmalı jeoloji uygulaması: Örnek çalışma alanı olarak Doğu Anadolu Fayı boyunca Palu – Hazar Gölü bölgesi (Elazığ, Türkiye)’, Geomatik, vol. 6, no. 3, pp. 238–246, 2021.
  • R. Ulusay, Ö. Aydan, and R. Kilic, ‘Geotechnical assessment of the 2005 Kuzulu landslide (Turkey)’, Eng. Geol., 2007.
  • I. Yilmaz, ‘A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks’, Bull. Eng. Geol. Environ., 2009.
  • I. Yilmaz, ‘Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine’, Environ. Earth Sci., 2010.
  • A. Yıldırım, ‘Koyulhisar-Kuzulu (Sivas) Heyelanının Jeomorfolojik Etüdü’, Doğu Coğrafya Derg., vol. 11, no. 15, pp. 323–338, 2011.
  • M. E. Cihangir, T. Görüm, and H. A. Nefeslioğlu, ‘Heyelan tetikleyici faktörlerine bağlı mekânsal hassasiyet değerlendirmesi’, Türk Cograf. Derg., vol. 70, pp. 133–142, 2018.
  • A. Polat and D. Erik, ‘Debris flow susceptibility and propagation assessment in West Koyulhisar, Turkey’, J. Mt. Sci., 2020.
  • Ö. Gürsoy and Ş. Kaya, ‘Detecting of Lithological Units by Using Terrestrial Spectral Data and Remote Sensing Image’, J. Indian Soc. Remote Sens., vol. 45, no. 2, 2017.
  • Ö. Gürsoy, Ş. Kaya, Z. Çakir, O. Tatar, and O. Canbaz, ‘Determining lateral offsets of rocks along the eastern part of the North Anatolian Fault Zone (Turkey) using spectral classification of satellite images and field measurements’, Geomatics, Nat. Hazards Risk, vol. 8, no. 2, pp. 1276–1288, 2017.
  • O. Canbaz, Ö. Gürsoy, and A. Gökce, ‘Detecting Clay Minerals in Hydrothermal Alteration Areas with Integration of ASTER Image and Spectral Data in Kösedag-Zara (Sivas), Turkey’, J. Geol. Soc. India, vol. 91, no. 4, pp. 389–516, 2018.
  • A. I. Okay and O. Tüysüz, ‘Tethyan sutures of northern Turkey’, Geol. Soc. London, Spec. Publ., vol. 156, no. 1, pp. 475–515, 1999.
  • MTA, ‘1/500.000 Türkiye Jeoloji Haritası, Sivas Paftası. Maden Tetkik ve Arama Genel Müdürlüğü’, Ankara., 2002.
  • İ. Ketin, ‘On the tectonic-mechanical consequences of the great Anatolian earthquakes of the last decenions’, Geol Rundsch, vol. 36, pp. 77–83, 1948.
  • İ. Seymen, ‘Tectonic feature of North Anatolian Fault zone in Kelkit valley section’, Istanbul Tech. Univ., 1975.
  • M. E. Ayhan et al., ‘Kinematics of the Mw = 7.2, 12 November 1999, Düzce, Turkey Earthquake’, Geophys. Res. Lett., 2001.
  • C. Zabci, T. Sançar, H. S. Akyuz, and N. G. Kiyak, ‘Spatial slip behavior of large strike-slip fault belts: Implications for the Holocene slip rates of the eastern termination of the North Anatolian Fault, Turkey’, J. Geophys. Res. Solid Earth, 2015.
  • O. Tatar et al., ‘Crustal deformation and kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey) from GPS measurements’, Tectonophysics, 2012.
  • Y. Tatar, ‘Tectonic structures along the North Anatolian fault zone, northeast of Refahiye (Erzincan)’, Tectonophysics, 1975.
  • Y. Tatar, ‘Tectonic investigations on the Erzincan-Refahiye section of the North Anatolian Fault Zone’, Hacettepe Univ. Earthscience, vol. 1, no. 2, pp. 201–236, 1978.
  • A. M. C. Şengör, ‘The North Anatolian transform fault: Its age, offset and tectonic significance’, J. Geol. Soc. London., 1979.
  • S. Sipahioğlu, . ‘Investigation of earthquake activity of North Anatolian Fault Zone and its surroundings’, Bull. Earthq. Res. Ankara, vol. 45, pp. 5–138, 1984.
  • A. M. C. Sengor, N. Gorur, and F. Saroglu, ‘Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study.’, Strike-slip Deform. basin Form. Sediment., 1985.
  • F. Şaroğlu, ‘Age and offset of the North Anatolian fault’, METU J Pure Appl Sci, vol. 21, no. 1–3, pp. 65–79, 1988.
  • O. Tatar, ‘Determination of extension direction in naturally deformed limestones within strike-slip fault zones using microcracks; Niksar Basin (Turkey) as case study’, 2Turkish J. Earth Sci., vol. 5, pp. 45–33, 1996.
  • C. Yaltirak, B. Alpar, and H. Yüce, ‘Tectonic elements controlling the evolution of the Gulf of Saros (northeastern Aegean Sea, Turkey)’, Tectonophysics, 1998.
  • V. Toprak, ‘Neotectonic characteristics of the North Anatolian Fault Zone between Koyulhisar and Suşehri’, METU J. Pure Ap. Sci. 21:155-66, 1988.
  • A. Yılmaz, ‘Yukarı Kelkit Çayı ile Munzur Dağları Arasının Temel Jeoloji Özellikleri ve Yapısal Evrimi’, Türkiye Jeol. Bülteni, vol. 28, no. August, pp. 79–92, 1985.
  • İ. Terlemez and A. Yılmaz, ‘Ünye-OrduReşadiye-Koyulhisar-Karaçayır-Hafik arasında kalan bölgesinin jeolojisi. Rapor No: 6671. Maden Tetkik ve Arama Genel Müdürlügü, Ankara’, 1980.
  • Ş. Uysal, Y. Bedi, İ. Kurt, and F. Kılınç, ‘Koyulhisar (Sivas) Dolayının Jeolojisi. MTA Rapor No: 9838, Maden Tetkik ve Arama Genel Müdürlügü, Ankara (Yayınlanmamış)’, 1995.
  • M. Demirel, O. Tatar, and F. Koçbulut, ‘Kuzey Anadolu Fay Zonu Üzerinde Koyulhisar (Sivas) ve Yakın Çevresindeki Fayların Kinematik Özellikleri’, Türkiye Jeol. Bülteni, vol. 59, no. 8, pp. 357–370, 2016.
  • E. P. Green, P. J. Mumbay, A. J. Edwards, and C. Clarck, ‘Remote Sensing Handbook for Tropical Coastal Management.’, Coast. Manag. Sourcebooks 3, Unesco, Paris, 2000.
  • M. S. Thalib, N. Nurdin, and A. Aris, ‘The Ability of Lyzenga’s Algorithm for Seagrass Mapping using Sentinel-2A Imagery on Small Island, Spermonde Archipelago, Indonesia’, in IOP Conference Series: Earth and Environmental Science, 2018.
  • M. Drusch et al., ‘Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services’, Remote Sens. Environ., 2012.
  • M. J. Abrams, D. Brown, L. Lepley, and R. Sadowski, ‘Remote sensing for porphyry copper deposits in southern Arizona.’, Econ. Geol., vol. 78, no. 4, pp. 591–604, 1983.
  • K. Okada and M. Ishii, ‘ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt’, in International Geosciences and Remote Sensing Symposium “Better Understanding of Earth Environment”, 1993, p. Vol. 93, 126-128.
  • S. Gad and T. Kusky, ‘ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt’, Gondwana Res., vol. 11, no. 3, pp. 326–335, 2007.
  • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, ‘A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal’, IEEE Trans. Geosci. Remote Sens., 1988.
  • R. O. Green, B. E. Pavri, and T. G. Chrien, ‘On-orbit radiometric and spectral calibration characteristics of EO-1 hyperion derived with an underflight of AVIRIS and In situ measurements at Salar de Arizaro, Argentina’, IEEE Trans. Geosci. Remote Sens., 2003.
  • J. W. Boardman and R. O. Green, ‘Exploring the spectral variability of the earth as measured by AVIRIS in 1999. Summaries of the ninth annual JPL airborne geosciences workshop. Jet Propulsion Laboratory Special Publication 18’, 2000, p. 10.
  • jensen, ‘Introductory Digital Image Processing (3rd edition). Prentice Hall.’, Int. J. Remote Sens., 2005.
  • T. M. Lillesand and R. W. Kiefer, ‘Remote sensing and image interpretation.’, Remote Sens. image Interpret., 1979.
  • T. Salehi and M. H. Tangestani, ‘Evaluation of WorldView-3 VNIR and SWIR Data for Hydrothermal Alteration Mapping for Mineral Exploration: Case Study from Northeastern Isfahan, Iran’, Nat. Resour. Res., 2020.
  • F. F. Sabins, ‘Remote sensing for mineral exploration’, Ore Geol. Rev., 1999.
  • M. H. Tangestani and S. Shayeganpour, ‘Mapping a lithologically complex terrain using Sentinel-2A data: a case study of Suriyan area, southwestern Iran’, Int. J. Remote Sens., 2020.

A Case Study on the Performance of Sentinel-2A Satellite Images in Areas with Complex Geology and Topography: Koyulhisar (Sivas-Turkey)

Year 2022, Issue: 34, 387 - 395, 31.03.2022
https://doi.org/10.31590/ejosat.1082487

Abstract

This study was carried out to reveal geological characteristics using Sentinel-2A multispectral satellite image. Sedimentary and volcanic rocks crop out in the study area within the borders of the Koyulhisar town of Sivas province. In addition, the study area is located on the North Anatolian Fault Zone (NAFZ), one of the most important active fault zones in Turkey. There are many areas with landslide risk in this area, which has a steep and rugged topography. For this reason, it is very important to reveal the geological features of the study area. In the study, remote sensing techniques such as band ratio, minimum noise fraction (MNF) and maximum likelihood classification (MLC) were used. The results were obtained that would require the geological formations and unit boundaries to be reviewed and redrawn within the existing geological map.

Project Number

M-722

References

  • F. A. Kruse, J. W. Boardman, and J. F. Huntington, ‘Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping’, IEEE Trans. Geosci. Remote Sens., 2003.
  • W. Ge, Q. Cheng, Y. Tang, L. Jing, and C. Gao, ‘Lithological classification using Sentinel-2A data in the Shibanjing ophiolite complex in Inner Mongolia, China’, Remote Sens., 2018.
  • F. D. Van der Meer, H. M. A. van der Werff, and F. J. A. van Ruitenbeek, ‘Potential of ESA’s Sentinel-2 for geological applications’, Remote Sens. Environ., 2014.
  • H. van der Werff and F. van der Meer, ‘Sentinel-2 for mapping iron absorption feature parameters’, Remote Sens., 2015.
  • Z. Malenovský et al., ‘Sentinels for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land’, Remote Sens. Environ., 2012.
  • K. Richter, C. Atzberger, F. Vuolo, P. Weihs, and G. D’urso, ‘Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize’, Can. J. Remote Sens., 2009.
  • C. Atzberger and K. Richter, ‘Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery’, Remote Sens. Environ., 2012.
  • J. G. P. W. Clevers and A. A. Gitelson, ‘Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on sentinel-2 and-3’, Int. J. Appl. Earth Obs. Geoinf., 2013.
  • K. Toming, T. Kutser, A. Laas, M. Sepp, B. Paavel, and T. Nõges, ‘First experiences in mapping lakewater quality parameters with sentinel-2 MSI imagery’, Remote Sens., 2016.
  • D. Stratoulias, H. Balzter, O. Sykioti, A. Zlinszky, and V. R. Tóth, ‘Evaluating sentinel-2 for lakeshore habitat mapping based on airborne hyperspectral data’, Sensors (Switzerland), 2015.
  • M. Immitzer, F. Vuolo, and C. Atzberger, ‘First experience with Sentinel-2 data for crop and tree species classifications in central Europe’, Remote Sens., 2016.
  • M. S. Salama, M. Radwan, and R. van der Velde, ‘A hydro-optical model for deriving water quality variables from satellite images (HydroSat): A case study of the Nile River demonstrating the future Sentinel-2 capabilities’, Phys. Chem. Earth, 2012.
  • J. Hedley, C. Roelfsema, B. Koetz, and S. Phinn, ‘Capability of the Sentinel 2 mission for tropical coral reef mapping and coral bleaching detection’, Remote Sens. Environ., 2012.
  • H. van der Werff and F. van der Meer, ‘Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing’, Remote Sens., 2016.
  • A. El Atillah, Z. E. A. El Morjani, and M. Souhassou, ‘Use of the Sentinel-2A Multispectral Image for Litho-Structural and Alteration Mapping in Al Glo’a Map Sheet (1/50,000) (Bou Azzer-El Graara Inlier, Central Anti-Atlas, Morocco)’, Artif. Satell., 2019.
  • B. Hu, Y. Xu, B. Wan, X. Wu, and G. Yi, ‘Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China’, Ore Geol. Rev., 2018.
  • J. Lin, R. Wang, B. Zhao, and S. Cheng, ‘A comprehensive scheme for lithological mapping using Sentinel-2A and ASTER GDEM in weathered and vegetated coastal zone, Southern China’, Open Geosci., 2019.
  • M. Karaman, ‘Grafit Cevherleşmelerinin Sentinel-2 Uydu Görüntülerinden Belirlenmesinde En Uygun Bant Kombinasyonları’, Avrupa Bilim ve Teknol. Derg., vol. 25, pp. 749–757, 2021.
  • H. A. Baran, ‘Hakkâri ili baz metal yataklarının uzaktan algılama ile belirlenmesi’, Gümüşhane Fen Bilim. Enstitüsü Derg., vol. 11, no. 2, pp. 339–347, 2021.
  • C. Zabcı, ‘Çok bantlı Landsat 8-OLI ve Sentinel-2A MSI uydu görüntülerinin karşılaştırmalı jeoloji uygulaması: Örnek çalışma alanı olarak Doğu Anadolu Fayı boyunca Palu – Hazar Gölü bölgesi (Elazığ, Türkiye)’, Geomatik, vol. 6, no. 3, pp. 238–246, 2021.
  • R. Ulusay, Ö. Aydan, and R. Kilic, ‘Geotechnical assessment of the 2005 Kuzulu landslide (Turkey)’, Eng. Geol., 2007.
  • I. Yilmaz, ‘A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks’, Bull. Eng. Geol. Environ., 2009.
  • I. Yilmaz, ‘Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine’, Environ. Earth Sci., 2010.
  • A. Yıldırım, ‘Koyulhisar-Kuzulu (Sivas) Heyelanının Jeomorfolojik Etüdü’, Doğu Coğrafya Derg., vol. 11, no. 15, pp. 323–338, 2011.
  • M. E. Cihangir, T. Görüm, and H. A. Nefeslioğlu, ‘Heyelan tetikleyici faktörlerine bağlı mekânsal hassasiyet değerlendirmesi’, Türk Cograf. Derg., vol. 70, pp. 133–142, 2018.
  • A. Polat and D. Erik, ‘Debris flow susceptibility and propagation assessment in West Koyulhisar, Turkey’, J. Mt. Sci., 2020.
  • Ö. Gürsoy and Ş. Kaya, ‘Detecting of Lithological Units by Using Terrestrial Spectral Data and Remote Sensing Image’, J. Indian Soc. Remote Sens., vol. 45, no. 2, 2017.
  • Ö. Gürsoy, Ş. Kaya, Z. Çakir, O. Tatar, and O. Canbaz, ‘Determining lateral offsets of rocks along the eastern part of the North Anatolian Fault Zone (Turkey) using spectral classification of satellite images and field measurements’, Geomatics, Nat. Hazards Risk, vol. 8, no. 2, pp. 1276–1288, 2017.
  • O. Canbaz, Ö. Gürsoy, and A. Gökce, ‘Detecting Clay Minerals in Hydrothermal Alteration Areas with Integration of ASTER Image and Spectral Data in Kösedag-Zara (Sivas), Turkey’, J. Geol. Soc. India, vol. 91, no. 4, pp. 389–516, 2018.
  • A. I. Okay and O. Tüysüz, ‘Tethyan sutures of northern Turkey’, Geol. Soc. London, Spec. Publ., vol. 156, no. 1, pp. 475–515, 1999.
  • MTA, ‘1/500.000 Türkiye Jeoloji Haritası, Sivas Paftası. Maden Tetkik ve Arama Genel Müdürlüğü’, Ankara., 2002.
  • İ. Ketin, ‘On the tectonic-mechanical consequences of the great Anatolian earthquakes of the last decenions’, Geol Rundsch, vol. 36, pp. 77–83, 1948.
  • İ. Seymen, ‘Tectonic feature of North Anatolian Fault zone in Kelkit valley section’, Istanbul Tech. Univ., 1975.
  • M. E. Ayhan et al., ‘Kinematics of the Mw = 7.2, 12 November 1999, Düzce, Turkey Earthquake’, Geophys. Res. Lett., 2001.
  • C. Zabci, T. Sançar, H. S. Akyuz, and N. G. Kiyak, ‘Spatial slip behavior of large strike-slip fault belts: Implications for the Holocene slip rates of the eastern termination of the North Anatolian Fault, Turkey’, J. Geophys. Res. Solid Earth, 2015.
  • O. Tatar et al., ‘Crustal deformation and kinematics of the Eastern Part of the North Anatolian Fault Zone (Turkey) from GPS measurements’, Tectonophysics, 2012.
  • Y. Tatar, ‘Tectonic structures along the North Anatolian fault zone, northeast of Refahiye (Erzincan)’, Tectonophysics, 1975.
  • Y. Tatar, ‘Tectonic investigations on the Erzincan-Refahiye section of the North Anatolian Fault Zone’, Hacettepe Univ. Earthscience, vol. 1, no. 2, pp. 201–236, 1978.
  • A. M. C. Şengör, ‘The North Anatolian transform fault: Its age, offset and tectonic significance’, J. Geol. Soc. London., 1979.
  • S. Sipahioğlu, . ‘Investigation of earthquake activity of North Anatolian Fault Zone and its surroundings’, Bull. Earthq. Res. Ankara, vol. 45, pp. 5–138, 1984.
  • A. M. C. Sengor, N. Gorur, and F. Saroglu, ‘Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study.’, Strike-slip Deform. basin Form. Sediment., 1985.
  • F. Şaroğlu, ‘Age and offset of the North Anatolian fault’, METU J Pure Appl Sci, vol. 21, no. 1–3, pp. 65–79, 1988.
  • O. Tatar, ‘Determination of extension direction in naturally deformed limestones within strike-slip fault zones using microcracks; Niksar Basin (Turkey) as case study’, 2Turkish J. Earth Sci., vol. 5, pp. 45–33, 1996.
  • C. Yaltirak, B. Alpar, and H. Yüce, ‘Tectonic elements controlling the evolution of the Gulf of Saros (northeastern Aegean Sea, Turkey)’, Tectonophysics, 1998.
  • V. Toprak, ‘Neotectonic characteristics of the North Anatolian Fault Zone between Koyulhisar and Suşehri’, METU J. Pure Ap. Sci. 21:155-66, 1988.
  • A. Yılmaz, ‘Yukarı Kelkit Çayı ile Munzur Dağları Arasının Temel Jeoloji Özellikleri ve Yapısal Evrimi’, Türkiye Jeol. Bülteni, vol. 28, no. August, pp. 79–92, 1985.
  • İ. Terlemez and A. Yılmaz, ‘Ünye-OrduReşadiye-Koyulhisar-Karaçayır-Hafik arasında kalan bölgesinin jeolojisi. Rapor No: 6671. Maden Tetkik ve Arama Genel Müdürlügü, Ankara’, 1980.
  • Ş. Uysal, Y. Bedi, İ. Kurt, and F. Kılınç, ‘Koyulhisar (Sivas) Dolayının Jeolojisi. MTA Rapor No: 9838, Maden Tetkik ve Arama Genel Müdürlügü, Ankara (Yayınlanmamış)’, 1995.
  • M. Demirel, O. Tatar, and F. Koçbulut, ‘Kuzey Anadolu Fay Zonu Üzerinde Koyulhisar (Sivas) ve Yakın Çevresindeki Fayların Kinematik Özellikleri’, Türkiye Jeol. Bülteni, vol. 59, no. 8, pp. 357–370, 2016.
  • E. P. Green, P. J. Mumbay, A. J. Edwards, and C. Clarck, ‘Remote Sensing Handbook for Tropical Coastal Management.’, Coast. Manag. Sourcebooks 3, Unesco, Paris, 2000.
  • M. S. Thalib, N. Nurdin, and A. Aris, ‘The Ability of Lyzenga’s Algorithm for Seagrass Mapping using Sentinel-2A Imagery on Small Island, Spermonde Archipelago, Indonesia’, in IOP Conference Series: Earth and Environmental Science, 2018.
  • M. Drusch et al., ‘Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services’, Remote Sens. Environ., 2012.
  • M. J. Abrams, D. Brown, L. Lepley, and R. Sadowski, ‘Remote sensing for porphyry copper deposits in southern Arizona.’, Econ. Geol., vol. 78, no. 4, pp. 591–604, 1983.
  • K. Okada and M. Ishii, ‘ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt’, in International Geosciences and Remote Sensing Symposium “Better Understanding of Earth Environment”, 1993, p. Vol. 93, 126-128.
  • S. Gad and T. Kusky, ‘ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt’, Gondwana Res., vol. 11, no. 3, pp. 326–335, 2007.
  • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, ‘A Transformation for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal’, IEEE Trans. Geosci. Remote Sens., 1988.
  • R. O. Green, B. E. Pavri, and T. G. Chrien, ‘On-orbit radiometric and spectral calibration characteristics of EO-1 hyperion derived with an underflight of AVIRIS and In situ measurements at Salar de Arizaro, Argentina’, IEEE Trans. Geosci. Remote Sens., 2003.
  • J. W. Boardman and R. O. Green, ‘Exploring the spectral variability of the earth as measured by AVIRIS in 1999. Summaries of the ninth annual JPL airborne geosciences workshop. Jet Propulsion Laboratory Special Publication 18’, 2000, p. 10.
  • jensen, ‘Introductory Digital Image Processing (3rd edition). Prentice Hall.’, Int. J. Remote Sens., 2005.
  • T. M. Lillesand and R. W. Kiefer, ‘Remote sensing and image interpretation.’, Remote Sens. image Interpret., 1979.
  • T. Salehi and M. H. Tangestani, ‘Evaluation of WorldView-3 VNIR and SWIR Data for Hydrothermal Alteration Mapping for Mineral Exploration: Case Study from Northeastern Isfahan, Iran’, Nat. Resour. Res., 2020.
  • F. F. Sabins, ‘Remote sensing for mineral exploration’, Ore Geol. Rev., 1999.
  • M. H. Tangestani and S. Shayeganpour, ‘Mapping a lithologically complex terrain using Sentinel-2A data: a case study of Suriyan area, southwestern Iran’, Int. J. Remote Sens., 2020.
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ayşe Betül Çalışkan 0000-0001-7724-6664

Oktay Canbaz 0000-0002-8161-1326

Önder Gürsoy 0000-0002-1531-135X

Project Number M-722
Early Pub Date January 30, 2022
Publication Date March 31, 2022
Published in Issue Year 2022 Issue: 34

Cite

APA Çalışkan, A. B., Canbaz, O., & Gürsoy, Ö. (2022). Karmaşık Jeoloji ve Topografyaya Sahip Alanlarda Sentinel-2A Uydu Görüntülerinin Performansı Üzerine Bir Örnek Çalışma: Koyulhisar (Sivas-Türkiye). Avrupa Bilim Ve Teknoloji Dergisi(34), 387-395. https://doi.org/10.31590/ejosat.1082487