Research Article
BibTex RIS Cite

Investigation of Lucas Number Sequence in Term of Information Entropy

Year 2022, Issue: 34, 665 - 671, 31.03.2022
https://doi.org/10.31590/ejosat.1083933

Abstract

Lucas number sequence is obtained by the recurrence relation L_n=L_(n-1)+L_(n-2)with initial terms L_1=1 and L_2=3. In this paper, the Lucas number sequence was investigated in term of information entropy. The using of number triangles is an always application when the entropy measures of systems are calculated. Since the Fibonacci number sequence can be obtained from Pascal triangle and the Lucas number sequence can be obtained from Lucas triangle, the entropy measures of these triangles were calculated. The obtained results were compared with the harmonic triangle of Leibniz.

References

  • I. D. Stones, “The Harmonic Triangle: Opportunities for Pattern Identification and Generalization,” Math. Teach., vol. 76, no. 5, 2021.
  • C. Tsallis, M. Gell-Mann, and Y. Sato, “Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive,” Proc. Natl. Acad. Sci., vol. 102, no. 43, pp. 15377–15382, Oct. 2005
  • X. Gao and Y. Deng, “The Pseudo-Pascal Triangle of Maximum Deng Entropy,” Int. J. Comput. Commun. Control, vol. 15, no. 1, Feb. 2020.
  • Y. Song and Y. Deng, “Entropic Explanation of Power Set,” Int. J. Comput. Commun. Control, vol. 16, no. 4, Aug. 2021.
  • S. R. Nurshiami, A. Wardayani, and K. H. Setiani, “Karakteristik Segitiga Lucas,” J. Ilm. Mat. dan Pendidik. Mat., vol. 11, no. 1, p. 11, May 2020.
  • N. Robbins, “The lucas triangle revisited,” Fibonacci Q., vol. 43, no. 2, 2005.
  • R. Sivaraman, “On Some Properties of Leibniz’s Triangle,” Math. Stat., vol. 9, no. 3, pp. 209–217, May 2021.
  • İ. Tuğal, B. Şahin, A. Şahin, “The Shannon Entropy of Fibonacci Numbers”, MATI vol. 4, no 1, pp. 12-22, Jan. 2022.

Lucas Sayı Dizisinin Bilgi Entropisi Yönünden İncelenmesi

Year 2022, Issue: 34, 665 - 671, 31.03.2022
https://doi.org/10.31590/ejosat.1083933

Abstract

Lucas sayı dizisi, ilk iki terimi L_1=1 ve L_2=3 olmak üzere L_n=L_(n-1)+L_(n-2) indirgeme bağıntısı ile elde edilir. Bu çalışmada Lucas sayı dizisi, bilgi entropisi yönünden incelendi. Sistemlerin entropi değerleri hesaplanırken sayı üçgenlerinden yararlanmak olağan bir uygulamadır. Fibonacci sayıları Pascal üçgeninden ve Lucas sayıları Lucas üçgeninden elde edilebileceğinden, bu üçgenlerin entropisi hesaplandı. Elde edilen sonuçlar Leibniz’in harmonik üçgeniyle kıyaslandı.

References

  • I. D. Stones, “The Harmonic Triangle: Opportunities for Pattern Identification and Generalization,” Math. Teach., vol. 76, no. 5, 2021.
  • C. Tsallis, M. Gell-Mann, and Y. Sato, “Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive,” Proc. Natl. Acad. Sci., vol. 102, no. 43, pp. 15377–15382, Oct. 2005
  • X. Gao and Y. Deng, “The Pseudo-Pascal Triangle of Maximum Deng Entropy,” Int. J. Comput. Commun. Control, vol. 15, no. 1, Feb. 2020.
  • Y. Song and Y. Deng, “Entropic Explanation of Power Set,” Int. J. Comput. Commun. Control, vol. 16, no. 4, Aug. 2021.
  • S. R. Nurshiami, A. Wardayani, and K. H. Setiani, “Karakteristik Segitiga Lucas,” J. Ilm. Mat. dan Pendidik. Mat., vol. 11, no. 1, p. 11, May 2020.
  • N. Robbins, “The lucas triangle revisited,” Fibonacci Q., vol. 43, no. 2, 2005.
  • R. Sivaraman, “On Some Properties of Leibniz’s Triangle,” Math. Stat., vol. 9, no. 3, pp. 209–217, May 2021.
  • İ. Tuğal, B. Şahin, A. Şahin, “The Shannon Entropy of Fibonacci Numbers”, MATI vol. 4, no 1, pp. 12-22, Jan. 2022.
There are 8 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Bünyamin Şahin 0000-0003-1094-5481

İhsan Tuğal 0000-0003-1898-9438

Early Pub Date January 30, 2022
Publication Date March 31, 2022
Published in Issue Year 2022 Issue: 34

Cite

APA Şahin, B., & Tuğal, İ. (2022). Lucas Sayı Dizisinin Bilgi Entropisi Yönünden İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(34), 665-671. https://doi.org/10.31590/ejosat.1083933