Research Article
BibTex RIS Cite

Orta Karadeniz Bölgesi Kızılırmak ve Yeşilırmak Nehirlerindeki Mikrokirletici Varlığının İncelenmesi

Year 2022, Issue: 45, 188 - 193, 31.12.2022
https://doi.org/10.31590/ejosat.1230299

Abstract

Sucul ortamda bulunan mikrokirleticiler insan sağlığı ve çevre için olumsuz etkilere neden olmaktadır. Mikrokirleticiler biyolojik arıtmaya karşı dirençli oldukları için atıksu arıtma tesislerinde tam olarak giderilememekte ve alıcı ortama deşarj edilmektedir. Bu kapsamda yüzeysel sular en fazla mikrokirletici kirliliğine maruz kalmaktadır. Bu çalışmada Orta Karadeniz bölgesinin en büyük nehirlerinden birisi olan Kızılırmak ve Yeşilırmak nehirleri insan aktivitleri, endüstriyel ve tarımsal deşarjlar nedeniyle yoğun bir şekilde kirlenmektedir. Bu nedenle Kızılrmak ve Yeşil ırmak nehirlerinin fizikokimyasal ve organik kirletici parametrelerinin ölçülerek hesaplanması amaçlanmıştır. Çalışmanın en önemli amacı ise Kızılrmak ve Yeşilırmak nehirlerine yapılan deşarjlar sonucunda mikrokirletici akıbetini belirlemektir. Bu kapsamda Dünya’da yüzeysel sularda sıklıkla tespit edilen dört farklı mikrokirletici grubu (kafein, naproksen, atenolol ve sülfametoksazol) açısından izleme çalışması yapılmıştır. Bu mikrokirleticiler olup yüzeysel sularda sıklıkla tespit edilen kirleticilerden seçilmiştir. Bu çalışmanın amacı yüzeysel suların maruz kaldığı mikrokirletici konsantrasyonlarının belirlenmesi ve literatürdeki çalışmalara katkı sağlamaktır. Ayrıca mikrokirleticiler Birleşmiş Milletler Sürüdürülebilir Kalkınma Hedeflerinin gerçekleştirilmesi için küresel bir tehdit haline geldiği için bu tarz çalışmalar önem taşımaktadır.

Supporting Institution

ondokuz mayıs üniversitesi

Project Number

PYO.MUH.1908.21.008

Thanks

Bu çalışmada Ondokuz Mayıs Üniversitesi Proje Yönetim Ofisi tarafından PYO.MUH.1908.21.008 numaralı proje kapsamında destek alınmıştır. Ayrıca bu çalışmanın özeti “1st International Conference on Engineering, Natural and Social Sciences, 20-23 Aralık 2022 (Konya / Türkiye)” kongresinde sunulmuştur.

References

  • Ahmad, J., Ahmad, M., Usman, A. R. A., & Al-Wabel, M. I. (2021). Prevalence of human pathogenic viruses in wastewater: A potential transmission risk as well as an effective tool for early outbreak detection for COVID-19. Journal of Environmental Management, 298(August), 113486. https://doi.org/10.1016/j.jenvman.2021.113486
  • Al-Qaim, F. F., Jusof, S. H., Abdullah, M. P., Mussa, Z. H., Tahrim, N. A., Khalik, W. M. A. W. M., & Othman, M. R. (2017). Penentuan kafien di permukaan air mengunakan pengekstrakan fasa pepejal dan kromatografi cecair prestasi tinggi. Malaysian Journal of Analytical Sciences, 21(1), 95–104. https://doi.org/10.17576/mjas-2017-2101-11
  • Alder, A. C., Schaffner, C., Majewsky, M., Klasmeier, J., & Fenner, K. (2010). Fate of β-blocker human pharmaceuticals in surface water: Comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Research, 44(3), 936–948. https://doi.org/10.1016/j.watres.2009.10.002
  • Archundia, D., Duwig, C., Lehembre, F., Chiron, S., Morel, M.-C., Prado, B., … Martins, J. M. F. (2017). Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products and occurrence of resistance genes. Science of The Total Environment, 576, 671–682. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.10.129
  • aus der Beek, T., Weber, F.-A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., & Küster, A. (2016). Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823–835. https://doi.org/https://doi.org/10.1002/etc.3339
  • Barnes, K. K., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2008). A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States--I) groundwater. The Science of the Total Environment, 402(2–3), 192–200. https://doi.org/10.1016/j.scitotenv.2008.04.028
  • Caliman, F. A., & Gavrilescu, M. (2009). Pharmaceuticals, personal care products and endocrine disrupting agents in the environment - A review. Clean - Soil, Air, Water, 37(4–5), 277–303. https://doi.org/10.1002/clen.200900038
  • Carvalho, I. T., & Santos, L. (2016). Antibiotics in the aquatic environments: A review of the European scenario. Environment International, 94, 736–757. https://doi.org/10.1016/j.envint.2016.06.025
  • Grujić, S., Vasiljević, T., & Lausević, M. (2009). Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry. Journal of Chromatography. A, 1216(25), 4989–5000. https://doi.org/10.1016/j.chroma.2009.04.059
  • Gutiérrez-Sánchez, P., Rodríguez-Llorente, D., Navarro, P., Águeda, V. I., Álvarez-Torrellas, S., García, J., & Larriba, M. (2022). Extraction of antibiotics identified in the EU Watch List 2020 from hospital wastewater using hydrophobic eutectic solvents and terpenoids. Separation and Purification Technology, 282, 120117. https://doi.org/https://doi.org/10.1016/j.seppur.2021.120117
  • Hanna, N., Sun, P., Sun, Q., Li, X., Yang, X., Ji, X., … Stålsby Lundborg, C. (2018). Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environment International, 114, 131–142. https://doi.org/https://doi.org/10.1016/j.envint.2018.02.003
  • Haro, N. K., Del Vecchio, P., Marcilio, N. R., & Féris, L. A. (2017). Removal of atenolol by adsorption – Study of kinetics and equilibrium. Journal of Cleaner Production, 154, 214–219. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.03.217
  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data (Elsevier; Vol. 131). https://doi.org/10.1016/S0378-4274(02)00041-3
  • Jallouli, N., Elghniji, K., Hentati, O., Ribeiro, A. R., Silva, A. M. T., & Ksibi, M. (2016). UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment. Journal of Hazardous Materials, 304, 329–336. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.10.045
  • Kim, M. K., & Zoh, K. D. (2016). Occurrence and removals of micropollutants in water environment. Environmental Engineering Research, 21(4), 319–332. https://doi.org/10.4491/eer.2016.115
  • Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5), 1013–1021. https://doi.org/10.1016/J.WATRES.2006.06.034
  • Liu, F., Nielsen, A. H., & Vollertsen, J. (2019). Sorption and Degradation Potential of Pharmaceuticals in Sediments from a Stormwater Retention Pond. Water, 11(3). https://doi.org/10.3390/w11030526
  • Orman ve Su İşleri Bakanlığı. (2012). Yerüstü Su Kalitesi Yönetmeliği. Retrieved from https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=16806&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5#:~:text=b) (Değişik ibare%3ARG,şekilde alıcı su ortamına bırakılamaz.
  • Patrolecco, L., Rauseo, J., Ademollo, N., Grenni, P., Cardoni, M., Levantesi, C., … Caracciolo, A. B. (2018). Persistence of the antibiotic sulfamethoxazole in river water alone or in the co-presence of ciprofloxacin. Science of The Total Environment, 640–641, 1438–1446. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.06.025
  • Shanmugam, G., Sampath, S., Selvaraj, K. K., Larsson, D. G. J., & Ramaswamy, B. R. (2014). Non-steroidal anti-inflammatory drugs in Indian rivers. Environmental Science and Pollution Research International, 21(2), 921–931. https://doi.org/10.1007/s11356-013-1957-6
  • Şimşek, A., Türkten, H., & Bakan, G. (2021). Su Kalite İndeksi ve İstatistiksel Analiz Kullanılarak Orta Karadeniz Bölgesi Kızılırmak ve Yeşilırmak Nehirleri Su Kalitesinin Değerlendirilmesi. The Black Sea Journal of Sciences, 11(1), 257–276. https://doi.org/10.31466/kfbd.1100682
  • Straub, J. O., & Stewart, K. M. (2007). Deterministic and probabilistic acute-based environmental risk assessment for naproxen for western Europe. Environmental Toxicology and Chemistry, 26(4), 795–806. https://doi.org/10.1897/06-212r.1
  • Üstün-Odabaşı, S., Maryam, B., Özdemir, N., & Büyükgüngör, H. (2020). Occurrence and seasonal variations of pharmaceuticals and personal care products in drinking water and wastewater treatment plants in Samsun, Turkey. Environmental Earth Sciences, 79(12). https://doi.org/10.1007/s12665-020-09047-7
  • Ustun Odabasi, S., Altin, S. H., & Buyukgungor, H. (2020). SuculOrtamdaki̇ Mi̇kroki̇rleti̇ci̇leri̇n Oluşumu, Durumu Vİleri̇Oksi̇dasyonProsesleri̇İGi̇deri̇lmesi̇. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 57–71. https://doi.org/10.28948/ngumuh.526064
  • Vulliet, E., & Cren-Olivé, C. (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution, 159(10), 2929–2934. https://doi.org/10.1016/J.ENVPOL.2011.04.033
  • Wojcieszyńska, D., & Guzik, U. (2020). Naproxen in the environment: its occurrence, toxicity to nontarget organisms and biodegradation. Applied Microbiology and Biotechnology, 104(5), 1849–1857. https://doi.org/10.1007/s00253-019-10343-x
  • Yang, X., Chen, F., Meng, F., Xie, Y., Chen, H., Young, K., … Fu, W. (2013). Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environmental Science and Pollution Research International, 20(8), 5864–5875. https://doi.org/10.1007/s11356-013-1641-x

Investigation of Micropollutant Presence in Kızılırmak and Yeşilırmak Rivers in Mid-Black Sea Region

Year 2022, Issue: 45, 188 - 193, 31.12.2022
https://doi.org/10.31590/ejosat.1230299

Abstract

Micropollutants in the aquatic environment cause adverse effects on human health and the environment. Since micropollutants are resistant to biological treatment, they cannot be removed entirely in wastewater treatment plants and are discharged to the receiving environment. In this context, surface waters are exposed to the most micropollutant pollution In this study, Kızılırmak and Yeşilırmak rivers, one of the largest rivers of the Mid-Black Sea region, are heavily polluted due to human activities and industrial and agricultural discharges. For this reason, it is aimed to measure and calculate the physicochemical and organic pollutant parameters of the Kızılırmak and Yeşilırmak rivers. The most important aim of the study is to determine the fate of micropollutants as a result of discharges to the Kızılırmak and Yeşilırmak rivers. In this context, a monitoring study was conducted on four different micropollutant groups (caffeine, naproxen, atenolol, and sulfamethoxazole) frequently detected worldwide in surface waters. These micropollutants are selected from pollutants that are commonly detected in surface waters. This study aims to determine the micropollutant concentrations to which surface waters are exposed and to contribute to the studies in the literature. In addition, such studies are important as micropollutants have become a global threat to the realization of the United Nations Sustainable Development Goals.

Project Number

PYO.MUH.1908.21.008

References

  • Ahmad, J., Ahmad, M., Usman, A. R. A., & Al-Wabel, M. I. (2021). Prevalence of human pathogenic viruses in wastewater: A potential transmission risk as well as an effective tool for early outbreak detection for COVID-19. Journal of Environmental Management, 298(August), 113486. https://doi.org/10.1016/j.jenvman.2021.113486
  • Al-Qaim, F. F., Jusof, S. H., Abdullah, M. P., Mussa, Z. H., Tahrim, N. A., Khalik, W. M. A. W. M., & Othman, M. R. (2017). Penentuan kafien di permukaan air mengunakan pengekstrakan fasa pepejal dan kromatografi cecair prestasi tinggi. Malaysian Journal of Analytical Sciences, 21(1), 95–104. https://doi.org/10.17576/mjas-2017-2101-11
  • Alder, A. C., Schaffner, C., Majewsky, M., Klasmeier, J., & Fenner, K. (2010). Fate of β-blocker human pharmaceuticals in surface water: Comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Research, 44(3), 936–948. https://doi.org/10.1016/j.watres.2009.10.002
  • Archundia, D., Duwig, C., Lehembre, F., Chiron, S., Morel, M.-C., Prado, B., … Martins, J. M. F. (2017). Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products and occurrence of resistance genes. Science of The Total Environment, 576, 671–682. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.10.129
  • aus der Beek, T., Weber, F.-A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., & Küster, A. (2016). Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823–835. https://doi.org/https://doi.org/10.1002/etc.3339
  • Barnes, K. K., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2008). A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States--I) groundwater. The Science of the Total Environment, 402(2–3), 192–200. https://doi.org/10.1016/j.scitotenv.2008.04.028
  • Caliman, F. A., & Gavrilescu, M. (2009). Pharmaceuticals, personal care products and endocrine disrupting agents in the environment - A review. Clean - Soil, Air, Water, 37(4–5), 277–303. https://doi.org/10.1002/clen.200900038
  • Carvalho, I. T., & Santos, L. (2016). Antibiotics in the aquatic environments: A review of the European scenario. Environment International, 94, 736–757. https://doi.org/10.1016/j.envint.2016.06.025
  • Grujić, S., Vasiljević, T., & Lausević, M. (2009). Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry. Journal of Chromatography. A, 1216(25), 4989–5000. https://doi.org/10.1016/j.chroma.2009.04.059
  • Gutiérrez-Sánchez, P., Rodríguez-Llorente, D., Navarro, P., Águeda, V. I., Álvarez-Torrellas, S., García, J., & Larriba, M. (2022). Extraction of antibiotics identified in the EU Watch List 2020 from hospital wastewater using hydrophobic eutectic solvents and terpenoids. Separation and Purification Technology, 282, 120117. https://doi.org/https://doi.org/10.1016/j.seppur.2021.120117
  • Hanna, N., Sun, P., Sun, Q., Li, X., Yang, X., Ji, X., … Stålsby Lundborg, C. (2018). Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environment International, 114, 131–142. https://doi.org/https://doi.org/10.1016/j.envint.2018.02.003
  • Haro, N. K., Del Vecchio, P., Marcilio, N. R., & Féris, L. A. (2017). Removal of atenolol by adsorption – Study of kinetics and equilibrium. Journal of Cleaner Production, 154, 214–219. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.03.217
  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data (Elsevier; Vol. 131). https://doi.org/10.1016/S0378-4274(02)00041-3
  • Jallouli, N., Elghniji, K., Hentati, O., Ribeiro, A. R., Silva, A. M. T., & Ksibi, M. (2016). UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment. Journal of Hazardous Materials, 304, 329–336. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.10.045
  • Kim, M. K., & Zoh, K. D. (2016). Occurrence and removals of micropollutants in water environment. Environmental Engineering Research, 21(4), 319–332. https://doi.org/10.4491/eer.2016.115
  • Kim, S. D., Cho, J., Kim, I. S., Vanderford, B. J., & Snyder, S. A. (2007). Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 41(5), 1013–1021. https://doi.org/10.1016/J.WATRES.2006.06.034
  • Liu, F., Nielsen, A. H., & Vollertsen, J. (2019). Sorption and Degradation Potential of Pharmaceuticals in Sediments from a Stormwater Retention Pond. Water, 11(3). https://doi.org/10.3390/w11030526
  • Orman ve Su İşleri Bakanlığı. (2012). Yerüstü Su Kalitesi Yönetmeliği. Retrieved from https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=16806&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5#:~:text=b) (Değişik ibare%3ARG,şekilde alıcı su ortamına bırakılamaz.
  • Patrolecco, L., Rauseo, J., Ademollo, N., Grenni, P., Cardoni, M., Levantesi, C., … Caracciolo, A. B. (2018). Persistence of the antibiotic sulfamethoxazole in river water alone or in the co-presence of ciprofloxacin. Science of The Total Environment, 640–641, 1438–1446. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.06.025
  • Shanmugam, G., Sampath, S., Selvaraj, K. K., Larsson, D. G. J., & Ramaswamy, B. R. (2014). Non-steroidal anti-inflammatory drugs in Indian rivers. Environmental Science and Pollution Research International, 21(2), 921–931. https://doi.org/10.1007/s11356-013-1957-6
  • Şimşek, A., Türkten, H., & Bakan, G. (2021). Su Kalite İndeksi ve İstatistiksel Analiz Kullanılarak Orta Karadeniz Bölgesi Kızılırmak ve Yeşilırmak Nehirleri Su Kalitesinin Değerlendirilmesi. The Black Sea Journal of Sciences, 11(1), 257–276. https://doi.org/10.31466/kfbd.1100682
  • Straub, J. O., & Stewart, K. M. (2007). Deterministic and probabilistic acute-based environmental risk assessment for naproxen for western Europe. Environmental Toxicology and Chemistry, 26(4), 795–806. https://doi.org/10.1897/06-212r.1
  • Üstün-Odabaşı, S., Maryam, B., Özdemir, N., & Büyükgüngör, H. (2020). Occurrence and seasonal variations of pharmaceuticals and personal care products in drinking water and wastewater treatment plants in Samsun, Turkey. Environmental Earth Sciences, 79(12). https://doi.org/10.1007/s12665-020-09047-7
  • Ustun Odabasi, S., Altin, S. H., & Buyukgungor, H. (2020). SuculOrtamdaki̇ Mi̇kroki̇rleti̇ci̇leri̇n Oluşumu, Durumu Vİleri̇Oksi̇dasyonProsesleri̇İGi̇deri̇lmesi̇. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 57–71. https://doi.org/10.28948/ngumuh.526064
  • Vulliet, E., & Cren-Olivé, C. (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution, 159(10), 2929–2934. https://doi.org/10.1016/J.ENVPOL.2011.04.033
  • Wojcieszyńska, D., & Guzik, U. (2020). Naproxen in the environment: its occurrence, toxicity to nontarget organisms and biodegradation. Applied Microbiology and Biotechnology, 104(5), 1849–1857. https://doi.org/10.1007/s00253-019-10343-x
  • Yang, X., Chen, F., Meng, F., Xie, Y., Chen, H., Young, K., … Fu, W. (2013). Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environmental Science and Pollution Research International, 20(8), 5864–5875. https://doi.org/10.1007/s11356-013-1641-x
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sevde Ustun Odabasi 0000-0003-3533-4089

Project Number PYO.MUH.1908.21.008
Early Pub Date December 31, 2022
Publication Date December 31, 2022
Published in Issue Year 2022 Issue: 45

Cite

APA Ustun Odabasi, S. (2022). Orta Karadeniz Bölgesi Kızılırmak ve Yeşilırmak Nehirlerindeki Mikrokirletici Varlığının İncelenmesi. Avrupa Bilim Ve Teknoloji Dergisi(45), 188-193. https://doi.org/10.31590/ejosat.1230299