Research Article
BibTex RIS Cite

IoT Veri Kümelerinde Makine Öğrenmesi Tekniklerine Dayalı Saldırı Tespiti

Year 2023, Issue: 52, 19 - 26, 15.12.2023
https://doi.org/10.31590/ejosat.1184984

Abstract

Servis Hizmet Reddi ve Dağıtık Servis Hizmet Reddi saldırıları sistemleri çökertmeyi ve hasar vermeyi amaçlarken, Port Tarama saldırısı ise sistemden veri toplamayı amaçlayan siber saldırı türlerindendir. Bu çalışmada, Rastgele Orman, Karar Ağacı, Destek Vektör Makinesi, K-En Yakın Komşu, Naive-Bayes, Gradyan Artırma, Doğrusal Diskriminant Analizi ve Ekstra Ağaçlar makine öğrenmesi algoritmaları kullanılarak, “Bot-IoT” ve “ToN_IoT” veri kümeleri üzerinde DoS, DDoS ve Scanning saldırıları sınıflandırılmıştır. Yapılan deneyler, Gradyan Artırma sınıflandırıcı ile %99.9944 F1-skorla en iyi sınıflandırma gerçekleştirildiğini göstermiştir.

References

  • Booij, T. M., Chiscop, I., Meeuwissen, E., Moustafa, N., & Hartog, F. T. H. D. (2022, January 1). ToN_IoT: The Role of Heterogeneity and the Need for Standardization of Features and Attack Types in IoT Network Intrusion Data Sets. IEEE Internet of Things Journal, 9(1), 485–496. https://doi.org/10.1109/jiot.2021.3085194
  • Falcao, X. A., & Papa, J. P. (2022, February 7). Optimum-Path Forest: Theory, Algorithms, and Applications (1st ed.). Academic Press, 68.
  • Ioannou, C.; Vassiliou, V. Network Attack Classification in IoT Using Support Vector Machines. J. Sens. Actuator Netw. 2021, 10, 58. https://doi.org/10.3390/jsan10030058
  • Islam, U., Muhammad, A., Mansoor, R., Hossain, M. S., Ahmad, I., Eldin, E. T., Khan, J. A., Rehman, A. U., & Shafiq, M. (2022, July 8). Detection of Distributed Denial of Service (DDoS) Attacks in IOT Based Monitoring System of Banking Sector Using Machine Learning Models. Sustainability, 14(14), 8374. https://doi.org/10.3390/su14148374
  • Koroniotis, N. (2018, November 2). Towards the Development of Realistic Botnet Dataset in the. . . arXiv.org. Retrieved September 6, 2022, from https://arxiv.org/abs/1811.00701
  • Kozik, R., Pawlicki, M. & Choraś, M. A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment. Pattern Anal Applic 24, 1441–1449 (2021). https://doi.org/10.1007/s10044-021-00980-2
  • M. Erfani et al., "A feature exploration approach for IoT attack type classification," 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2021, pp. 582-588, doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00101.
  • Nascita, A., Cerasuolo, F., Monda, D. D., Garcia, J. T. A., Montieri, A., & Pescape, A. (2022, May 2). Machine and Deep Learning Approaches for IoT Attack Classification. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). https://doi.org/10.1109/infocomwkshps54753.2022.9797971
  • Sahu, A. K., Sharma, S., Tanveer, M., & Raja, R. (2021, August). Internet of Things attack detection using hybrid Deep Learning Model. Computer Communications, 176, 146–154. https://doi.org/10.1016/j.comcom.2021.05.024
  • Ullah, I., & Mahmoud, Q. H. (2021). Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks. IEEE Access, 9, 103906–103926. https://doi.org/10.1109/access.2021.3094024
  • Wozniak, M., Silka, J., Wieczorek, M., & Alrashoud, M. (2021, August). Recurrent Neural Network Model for IoT and Networking Malware Threat Detection. IEEE Transactions on Industrial Informatics, 17(8), 5583–5594. https://doi.org/10.1109/tii.2020.3021689

Intrusion Detection based on Machine Learning Techniques in IoT Datasets

Year 2023, Issue: 52, 19 - 26, 15.12.2023
https://doi.org/10.31590/ejosat.1184984

Abstract

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks are types of attacks that aim system crash and cause damage, and Port Scanning attacks are types of attacks that aim to collect data from the system. In this study, DoS, DDoS and Scanning attacks on “Bot-IoT” and “ToN_IoT” datasets are classified using Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Naive-Bayes (NB), Gradient Boosting (GB), Linear Discriminant Analysis (LDA) and Extra Trees (ET) machine learning algorithms. The experimental results show that the GB classifier can achieve the best classification with an F1-score of 99.9944%.

References

  • Booij, T. M., Chiscop, I., Meeuwissen, E., Moustafa, N., & Hartog, F. T. H. D. (2022, January 1). ToN_IoT: The Role of Heterogeneity and the Need for Standardization of Features and Attack Types in IoT Network Intrusion Data Sets. IEEE Internet of Things Journal, 9(1), 485–496. https://doi.org/10.1109/jiot.2021.3085194
  • Falcao, X. A., & Papa, J. P. (2022, February 7). Optimum-Path Forest: Theory, Algorithms, and Applications (1st ed.). Academic Press, 68.
  • Ioannou, C.; Vassiliou, V. Network Attack Classification in IoT Using Support Vector Machines. J. Sens. Actuator Netw. 2021, 10, 58. https://doi.org/10.3390/jsan10030058
  • Islam, U., Muhammad, A., Mansoor, R., Hossain, M. S., Ahmad, I., Eldin, E. T., Khan, J. A., Rehman, A. U., & Shafiq, M. (2022, July 8). Detection of Distributed Denial of Service (DDoS) Attacks in IOT Based Monitoring System of Banking Sector Using Machine Learning Models. Sustainability, 14(14), 8374. https://doi.org/10.3390/su14148374
  • Koroniotis, N. (2018, November 2). Towards the Development of Realistic Botnet Dataset in the. . . arXiv.org. Retrieved September 6, 2022, from https://arxiv.org/abs/1811.00701
  • Kozik, R., Pawlicki, M. & Choraś, M. A new method of hybrid time window embedding with transformer-based traffic data classification in IoT-networked environment. Pattern Anal Applic 24, 1441–1449 (2021). https://doi.org/10.1007/s10044-021-00980-2
  • M. Erfani et al., "A feature exploration approach for IoT attack type classification," 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), 2021, pp. 582-588, doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech52372.2021.00101.
  • Nascita, A., Cerasuolo, F., Monda, D. D., Garcia, J. T. A., Montieri, A., & Pescape, A. (2022, May 2). Machine and Deep Learning Approaches for IoT Attack Classification. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). https://doi.org/10.1109/infocomwkshps54753.2022.9797971
  • Sahu, A. K., Sharma, S., Tanveer, M., & Raja, R. (2021, August). Internet of Things attack detection using hybrid Deep Learning Model. Computer Communications, 176, 146–154. https://doi.org/10.1016/j.comcom.2021.05.024
  • Ullah, I., & Mahmoud, Q. H. (2021). Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks. IEEE Access, 9, 103906–103926. https://doi.org/10.1109/access.2021.3094024
  • Wozniak, M., Silka, J., Wieczorek, M., & Alrashoud, M. (2021, August). Recurrent Neural Network Model for IoT and Networking Malware Threat Detection. IEEE Transactions on Industrial Informatics, 17(8), 5583–5594. https://doi.org/10.1109/tii.2020.3021689
There are 11 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Meltem Kurt Pehlivanoğlu 0000-0002-7581-9390

Arman Kuyucu This is me 0000-0001-7565-1236

Recep Kaya This is me 0000-0002-3626-1777

Recep Aydın This is me 0000-0003-3137-3937

Early Pub Date October 30, 2023
Publication Date December 15, 2023
Published in Issue Year 2023 Issue: 52

Cite

APA Kurt Pehlivanoğlu, M., Kuyucu, A., Kaya, R., Aydın, R. (2023). IoT Veri Kümelerinde Makine Öğrenmesi Tekniklerine Dayalı Saldırı Tespiti. Avrupa Bilim Ve Teknoloji Dergisi(52), 19-26. https://doi.org/10.31590/ejosat.1184984