Research Article
BibTex RIS Cite
Year 2021, Volume: 2 Issue: 1, 10 - 17, 03.06.2021

Abstract

References

  • Calixto, M., et al., Compositional and optoelectronic properties of CIS and CIGS thin films formed by electrodeposition. Solar energy materials and solar cells, 1999. 59(1-2): p. 75-84.
  • Fernandez, A., et al., Electrodeposited and selenized (CuInSe2)(CIS) thin films for photovoltaic applications. Solar Energy Materials and Solar Cells, 1998. 52(3-4): p. 423-431.
  • Gordillo, G. and C. Calderon, CIS thin film solar cells with evaporated InSe buffer layers. Solar energy materials and solar cells, 2003. 77(2): p. 163-173.
  • Zaretskaya, E., et al., Raman spectroscopy of CuInSe2 thin films prepared by selenization. Journal of Physics and Chemistry of Solids, 2003. 64(9-10): p. 1989-1993.
  • Caballero, R., et al. CGS-thin films solar cells on transparent back contact. in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. 2006. IEEE.
  • Ishizuka, S., et al., Structural tuning of wide‐gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow‐gap Cu (In, Ga) Se2. Progress in Photovoltaics: Research and Applications, 2014. 22(7): p. 821-829.
  • Thirumalaisamy, L., et al., Engineering of sub-band in CuGaS2 thin films via Mo doping by chemical spray pyrolysis route. Thin Solid Films, 2020. 709: p. 138252.
  • Aissaoui, O., et al., Study of flash evaporated CuIn1− xGaxTe2 (x= 0, 0.5 and 1) thin films. Thin Solid Films, 2009. 517(7): p. 2171-2174.
  • Jung, S., et al., Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique. Current Applied Physics, 2010. 10(4): p. 990-996.
  • Li, W., et al., Fabrication of Cu (In, Ga) Se2 thin films solar cell by selenization process with Se vapor. Solar Energy, 2006. 80(2): p. 191-195.
  • Zhou, D., et al., Sputtered molybdenum thin films and the application in CIGS solar cells. Applied Surface Science, 2016. 362: p. 202-209.
  • Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications, 2015. 23(1): p. 1-9.
  • Kato, T., et al., Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu (In, Ga)(Se, S) 2. IEEE Journal of Photovoltaics, 2018. 9(1): p. 325-330.
  • Karatay, A., et al., The effect of Se/Te ratio on transient absorption behavior and nonlinear absorption properties of CuIn0. 7Ga0. 3 (Se1− xTex) 2 (0≤ x≤ 1) amorphous semiconductor thin films. Optical Materials, 2017. 73: p. 20-24.
  • Gremenok, V., et al., Characterization of polycrystalline Cu (In, Ga) Te2 thin films prepared by pulsed laser deposition. Thin Solid Films, 2001. 394(1-2): p. 23-28.
  • Atasoy, Y., et al., Cu (In, Ga)(Se, Te) 2 films formed on metal foil substrates by a two-stage process employing electrodeposition and evaporation. Thin Solid Films, 2018. 649: p. 30-37.
  • Basol, B.M., V.K. Kapur, and R.J. Matson. Control of CuInSe/sub 2/film quality by substrate surface modifications in a two-stage process. in Photovoltaic Specialists Conference, 1991., Conference Record of the Twenty Second IEEE. 1991. IEEE.
  • Lee, D.-Y., S. Park, and J. Kim, Structural analysis of CIGS film prepared by chemical spray deposition. Current Applied Physics, 2011. 11(1): p. S88-S92.
  • Başol, B.M. Application of electrochemical deposition techniques to thin film solar cell processing. in Thin Film Solar Technology III. 2011. International Society for Optics and Photonics.
  • Basol, B.M., et al., Roll-to-roll manufacturing of flexible thin film photovoltaic modules. 2011, Google Patents.
  • Bhattacharya, R. and K. Rajeshwar, Electrodeposition of CuInX (X= Se, Te) thin films. Solar Cells, 1986. 16: p. 237-243.
  • Başol, B.M., et al., Cu (In, Ga) Se2 thin films and solar cells prepared by selenization of metallic precursors. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1996. 14(4): p. 2251-2256.
  • Witte, W., et al. Influence of the Ga content on the Mo/Cu (In, Ga) Se2 interface formation. in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. 2006. IEEE.
  • Rockett, A., et al., Na in selenized Cu (In, Ga) Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances. Thin Solid Films, 2000. 372(1-2): p. 212-217.
  • Sanad, M., M. Rashad, and A.Y. Shenouda, Novel CuIn1-xGaxTe2 Structures for High Efficiency Photo-electrochemical Solar Cells. Int. J. Electrochem. Sci, 2016. 11: p. 4337-4351.
  • Gaburici, D., et al., Rapid Synthesis of Polycrystalline CuGa1‐xInxTe2 Compounds. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 2000. 35(3): p. 265-270.
  • Rincón, C., S. Wasim, and G. Marín, Effect of donor-acceptor defect pairs on the electrical and optical properties of CuIn3Te5. Journal of Physics: Condensed Matter, 2002. 14(5): p. 997.
  • Rincón, C., et al., Raman spectra of CuGa3Te5 ordered‐defect compound. physica status solidi (b), 2017. 254(9): p. 1600844.
  • Rincón, C., et al., Raman spectra of CuInTe 2, CuIn 3 Te 5, and CuIn 5 Te 8 ternary compounds. Journal of Applied Physics, 2000. 88(6): p. 3439-3444.
  • Rincón, C., et al., Raman spectra of the chalcopyrite compound CuGaTe2. Journal of Physics and Chemistry of Solids, 2001. 62(5): p. 847-855.
  • Rincón, C., et al., Raman spectra of the chalcopyrite compound CuGaTe2. Materials Letters, 1999. 38(4): p. 305-307.
  • Wasim, S., et al., On the band gap anomaly in I–III–VI 2, I–III 3–VI 5, and I–III 5–VI 8 families of Cu ternaries. Applied Physics Letters, 2000. 77(1): p. 94-96.
  • Salem, A., et al., Synthesis and Electrical Transport Properties of CuInGaTe2. J Laser Opt Photonics, 2018. 5(183): p. 2.
  • Chandramohan, M., S. Velumani, and T. Venkatachalam, Experimental and theoretical investigations of structural and optical properties of CIGS thin films. Materials Science and Engineering: B, 2010. 174(1-3): p. 205-208.
  • Badgujar, A.C., S.R. Dhage, and S.V. Joshi, Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications. Thin Solid Films, 2015. 589: p. 79-84.
  • Hsu, W.-H., et al., Controlling morphology and crystallite size of Cu (In0. 7Ga0. 3) Se2 nano-crystals synthesized using a heating-up method. Journal of Solid State Chemistry, 2013. 208: p. 1-8.
  • Ananthan, M., B.C. Mohanty, and S. Kasiviswanathan, Micro-Raman spectroscopy studies of bulk and thin films of CuInTe2. Semiconductor science and technology, 2009. 24(7): p. 075019.
  • Ntholeng, N., Synthesis and characterization of Cu-based telluride semiconductor materials for application in photovoltaic cells. 2017.
  • Roy, S., et al., CuInTe2 thin films synthesized by graphite box annealing of In/Cu/Te stacked elemental layers. Vacuum, 2002. 65(1): p. 27-37.
  • Roy, S., et al., Synthesis of CuInTe2 by rapid thermal annealing of In/Cu/Te stacked elemental layers. physica status solidi (a), 2002. 189(1): p. 209-221.
  • Aksu, S., J. Wang, and B.M. Basol, Electrodeposition of In–Se and Ga–Se thin films for preparation of CIGS solar cells. Electrochemical and Solid-State Letters, 2009. 12(5): p. D33-D35.
  • Wasim, S., et al., Effect of donor–acceptor defect pairs on the crystal structure of In and Ga rich ternary compounds of Cu–In (Ga)–Se (Te) systems. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1990-1993.
  • Venkatachalam, M., et al., Investigations on electron beam evaporated Cu (In0. 85Ga0. 15) Se2 thin film solar cells. Solar Energy, 2009. 83(9): p. 1652-1655.
  • Fiat, S., et al., The influence of stoichiometry and annealing temperature on the properties of CuIn0. 7Ga0. 3Se2 and CuIn0. 7Ga0. 3Te2 thin films. Thin Solid Films, 2013. 545: p. 64-70.
  • Strzhemechny, Y., et al., Near-surface electronic defects and morphology of CuIn 1− x Ga x Se 2. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2002. 20(6): p. 2441-2448.

INVESTIGATION OF THE EFFECT OF HEATING RAMPING RATE ON Cu(In, Ga)Te2 THIN FILMS

Year 2021, Volume: 2 Issue: 1, 10 - 17, 03.06.2021

Abstract

Cu(In,Ga)Te2 (CIGT) thin films were grown using a two-stage method. In the first stage, (Cu, In, Ga) precursor layers were grown on Mo coated flexible stainless steel substrates using the electro-deposition method. NaF and Te layers were grown on metallic precursor layers using electron beam evaporation method. In the second stage, the foil/Mo/(Cu, In, Ga)/NaF/Te stacks were reacted at 600°C for 5 minutes by rapid thermal processing. The temperature ramping rates in this procedure were 0.5°C/sec, 1°C/sec, 5°C/sec and 10°C/sec. In order to investigate the effect of temperature ramping rate on the structural properties of CIGT thin films, XRD, Raman, SEM and EDS measurements were performed. Regardless of the ramping rates, it was determined that all samples crystallized in chalcopyrite structure. According to the Raman spectra, as the ramping rate increased, position of the A1 mode completely changed and shifted from 127 cm-1 to 135 cm-1 due to bond-stretching forces between the nearest-neighbor atoms. It was concluded that CIGT thin film reacted with a ramping rate of 5°C/sec had superior properties compared to other samples.

References

  • Calixto, M., et al., Compositional and optoelectronic properties of CIS and CIGS thin films formed by electrodeposition. Solar energy materials and solar cells, 1999. 59(1-2): p. 75-84.
  • Fernandez, A., et al., Electrodeposited and selenized (CuInSe2)(CIS) thin films for photovoltaic applications. Solar Energy Materials and Solar Cells, 1998. 52(3-4): p. 423-431.
  • Gordillo, G. and C. Calderon, CIS thin film solar cells with evaporated InSe buffer layers. Solar energy materials and solar cells, 2003. 77(2): p. 163-173.
  • Zaretskaya, E., et al., Raman spectroscopy of CuInSe2 thin films prepared by selenization. Journal of Physics and Chemistry of Solids, 2003. 64(9-10): p. 1989-1993.
  • Caballero, R., et al. CGS-thin films solar cells on transparent back contact. in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. 2006. IEEE.
  • Ishizuka, S., et al., Structural tuning of wide‐gap chalcopyrite CuGaSe2 thin films and highly efficient solar cells: differences from narrow‐gap Cu (In, Ga) Se2. Progress in Photovoltaics: Research and Applications, 2014. 22(7): p. 821-829.
  • Thirumalaisamy, L., et al., Engineering of sub-band in CuGaS2 thin films via Mo doping by chemical spray pyrolysis route. Thin Solid Films, 2020. 709: p. 138252.
  • Aissaoui, O., et al., Study of flash evaporated CuIn1− xGaxTe2 (x= 0, 0.5 and 1) thin films. Thin Solid Films, 2009. 517(7): p. 2171-2174.
  • Jung, S., et al., Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique. Current Applied Physics, 2010. 10(4): p. 990-996.
  • Li, W., et al., Fabrication of Cu (In, Ga) Se2 thin films solar cell by selenization process with Se vapor. Solar Energy, 2006. 80(2): p. 191-195.
  • Zhou, D., et al., Sputtered molybdenum thin films and the application in CIGS solar cells. Applied Surface Science, 2016. 362: p. 202-209.
  • Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications, 2015. 23(1): p. 1-9.
  • Kato, T., et al., Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu (In, Ga)(Se, S) 2. IEEE Journal of Photovoltaics, 2018. 9(1): p. 325-330.
  • Karatay, A., et al., The effect of Se/Te ratio on transient absorption behavior and nonlinear absorption properties of CuIn0. 7Ga0. 3 (Se1− xTex) 2 (0≤ x≤ 1) amorphous semiconductor thin films. Optical Materials, 2017. 73: p. 20-24.
  • Gremenok, V., et al., Characterization of polycrystalline Cu (In, Ga) Te2 thin films prepared by pulsed laser deposition. Thin Solid Films, 2001. 394(1-2): p. 23-28.
  • Atasoy, Y., et al., Cu (In, Ga)(Se, Te) 2 films formed on metal foil substrates by a two-stage process employing electrodeposition and evaporation. Thin Solid Films, 2018. 649: p. 30-37.
  • Basol, B.M., V.K. Kapur, and R.J. Matson. Control of CuInSe/sub 2/film quality by substrate surface modifications in a two-stage process. in Photovoltaic Specialists Conference, 1991., Conference Record of the Twenty Second IEEE. 1991. IEEE.
  • Lee, D.-Y., S. Park, and J. Kim, Structural analysis of CIGS film prepared by chemical spray deposition. Current Applied Physics, 2011. 11(1): p. S88-S92.
  • Başol, B.M. Application of electrochemical deposition techniques to thin film solar cell processing. in Thin Film Solar Technology III. 2011. International Society for Optics and Photonics.
  • Basol, B.M., et al., Roll-to-roll manufacturing of flexible thin film photovoltaic modules. 2011, Google Patents.
  • Bhattacharya, R. and K. Rajeshwar, Electrodeposition of CuInX (X= Se, Te) thin films. Solar Cells, 1986. 16: p. 237-243.
  • Başol, B.M., et al., Cu (In, Ga) Se2 thin films and solar cells prepared by selenization of metallic precursors. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1996. 14(4): p. 2251-2256.
  • Witte, W., et al. Influence of the Ga content on the Mo/Cu (In, Ga) Se2 interface formation. in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference. 2006. IEEE.
  • Rockett, A., et al., Na in selenized Cu (In, Ga) Se2 on Na-containing and Na-free glasses: distribution, grain structure, and device performances. Thin Solid Films, 2000. 372(1-2): p. 212-217.
  • Sanad, M., M. Rashad, and A.Y. Shenouda, Novel CuIn1-xGaxTe2 Structures for High Efficiency Photo-electrochemical Solar Cells. Int. J. Electrochem. Sci, 2016. 11: p. 4337-4351.
  • Gaburici, D., et al., Rapid Synthesis of Polycrystalline CuGa1‐xInxTe2 Compounds. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 2000. 35(3): p. 265-270.
  • Rincón, C., S. Wasim, and G. Marín, Effect of donor-acceptor defect pairs on the electrical and optical properties of CuIn3Te5. Journal of Physics: Condensed Matter, 2002. 14(5): p. 997.
  • Rincón, C., et al., Raman spectra of CuGa3Te5 ordered‐defect compound. physica status solidi (b), 2017. 254(9): p. 1600844.
  • Rincón, C., et al., Raman spectra of CuInTe 2, CuIn 3 Te 5, and CuIn 5 Te 8 ternary compounds. Journal of Applied Physics, 2000. 88(6): p. 3439-3444.
  • Rincón, C., et al., Raman spectra of the chalcopyrite compound CuGaTe2. Journal of Physics and Chemistry of Solids, 2001. 62(5): p. 847-855.
  • Rincón, C., et al., Raman spectra of the chalcopyrite compound CuGaTe2. Materials Letters, 1999. 38(4): p. 305-307.
  • Wasim, S., et al., On the band gap anomaly in I–III–VI 2, I–III 3–VI 5, and I–III 5–VI 8 families of Cu ternaries. Applied Physics Letters, 2000. 77(1): p. 94-96.
  • Salem, A., et al., Synthesis and Electrical Transport Properties of CuInGaTe2. J Laser Opt Photonics, 2018. 5(183): p. 2.
  • Chandramohan, M., S. Velumani, and T. Venkatachalam, Experimental and theoretical investigations of structural and optical properties of CIGS thin films. Materials Science and Engineering: B, 2010. 174(1-3): p. 205-208.
  • Badgujar, A.C., S.R. Dhage, and S.V. Joshi, Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications. Thin Solid Films, 2015. 589: p. 79-84.
  • Hsu, W.-H., et al., Controlling morphology and crystallite size of Cu (In0. 7Ga0. 3) Se2 nano-crystals synthesized using a heating-up method. Journal of Solid State Chemistry, 2013. 208: p. 1-8.
  • Ananthan, M., B.C. Mohanty, and S. Kasiviswanathan, Micro-Raman spectroscopy studies of bulk and thin films of CuInTe2. Semiconductor science and technology, 2009. 24(7): p. 075019.
  • Ntholeng, N., Synthesis and characterization of Cu-based telluride semiconductor materials for application in photovoltaic cells. 2017.
  • Roy, S., et al., CuInTe2 thin films synthesized by graphite box annealing of In/Cu/Te stacked elemental layers. Vacuum, 2002. 65(1): p. 27-37.
  • Roy, S., et al., Synthesis of CuInTe2 by rapid thermal annealing of In/Cu/Te stacked elemental layers. physica status solidi (a), 2002. 189(1): p. 209-221.
  • Aksu, S., J. Wang, and B.M. Basol, Electrodeposition of In–Se and Ga–Se thin films for preparation of CIGS solar cells. Electrochemical and Solid-State Letters, 2009. 12(5): p. D33-D35.
  • Wasim, S., et al., Effect of donor–acceptor defect pairs on the crystal structure of In and Ga rich ternary compounds of Cu–In (Ga)–Se (Te) systems. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1990-1993.
  • Venkatachalam, M., et al., Investigations on electron beam evaporated Cu (In0. 85Ga0. 15) Se2 thin film solar cells. Solar Energy, 2009. 83(9): p. 1652-1655.
  • Fiat, S., et al., The influence of stoichiometry and annealing temperature on the properties of CuIn0. 7Ga0. 3Se2 and CuIn0. 7Ga0. 3Te2 thin films. Thin Solid Films, 2013. 545: p. 64-70.
  • Strzhemechny, Y., et al., Near-surface electronic defects and morphology of CuIn 1− x Ga x Se 2. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2002. 20(6): p. 2441-2448.
There are 45 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Research Articles
Authors

Serkan Erkan 0000-0001-7249-6701

Yavuz Atasoy

Ali Çiriş 0000-0003-4266-2080

Emin Bacaksız 0000-0002-0041-273X

Publication Date June 3, 2021
Published in Issue Year 2021 Volume: 2 Issue: 1

Cite

IEEE S. Erkan, Y. Atasoy, A. Çiriş, and E. Bacaksız, “INVESTIGATION OF THE EFFECT OF HEATING RAMPING RATE ON Cu(In, Ga)Te2 THIN FILMS”, (EJSET), vol. 2, no. 1, pp. 10–17, 2021.