Cyclone separators, which are widely used in the cement industry, are very important in terms of preventing air pollution. Many studies on cyclone separators have been done for a long time by means of different models and with considering various parameters. Although much work has been done on the separators, there is no general agreement about the effect of the cone tip diameter on cyclone collection efficiency and / or a pressure drop. In this study, the effect of the cone tip diameter on the cyclone efficiency and the pressure drop was investigated in order to contribute to the literature in this regard. Geometries with four different cone tip diameters (60, 90, 120 and 150 mm) designed for this purpose were examined in three different flow rates and three different particle sizes (2, 4 and 6 µm). In Computational Fluid Dynamics (CFD) analysis, the turbulence was modeled using the Reynolds Stress Model (RSM). As a result of the study, it has been observed that the effect of the cone tip diameter has a non-ignorable importance at varying fluid inlet velocities and particle sizes.
Primary Language | English |
---|---|
Subjects | Mechanical Engineering |
Journal Section | Research Article |
Authors | |
Publication Date | December 30, 2020 |
Published in Issue | Year 2020 |
All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.