Research Article
BibTex RIS Cite
Year 2020, , 378 - 385, 30.12.2020
https://doi.org/10.36222/ejt.840329

Abstract

References

  • [1] CENELEC, (2015). Lead-Acid Starter Battery-Part 1: General requirements and methods of test, EN50342-1, Brussels.
  • [2] Richter, G., Meissner, E. (2004). Valve-regulated Lead-Acid Batteries in Automotive Applications — A Battery Manufacturer’s Perspective. Valve-Regulated Lead-Acid Batteries, 397–433. doi:10.1016/b978-044450746-4/50014-3
  • [3] Planté, G. (1860) Comptes Rendus de l’Académie des Sciences. Paris 50, 640-642.
  • [4] Faure, C.A. (1881) Comptes Rendus de l’Académie des Sciences. Paris 92, 951-953
  • [5] Kurzweil, P. (2010). Gaston Planté and his invention of the lead-acid battery – the genesis of the first practical rechargeable battery. Journal of Power Sources, 195 (14), 4424–34. doi: 10.1016/j.jpowsour.2009.12.126
  • [6] Posada, J. O. G., Rennie, A. J. R., Villar, S. P., Martins, V. L., Marinaccio, J., Barnes, A., Hall, P. J. (2017). Aqueous batteries as grid scale energy storage solutions. Renewable and Sustainable Energy Reviews, 68, 1174–1182. doi: 10.1016/j.rser.2016.02.024
  • [7] Torabi, F., Ahmadi, P. (2020). Lead-acid batteries. Simulation of Battery Systems, 149–215. doi:10.1016/b978-0-12-816212-5.00010-6
  • [8] Newman, R. H. (1994). Advantages and disadvantages of valve-regulated, lead/acid batteries. Journal of Power Sources, 52(1), 149–153. doi:10.1016/0378-7753(94)01940-1
  • [9] Kurzweil, P., Garche, J. (2017). Overview of batteries for future automobiles. Lead-Acid Batteries for Future Automobiles, 27–96. doi:10.1016/b978-0-444-63700-0.00002-7
  • [10] Pavlov, D. (2017). Invention and Development of the Lead–Acid Battery. Lead-Acid Batteries: Science and Technology, 3–32. doi:10.1016/b978-0-444-59552-2.00001-8
  • [11] Hildebrandt, T., Osada, A., Peng, S., Moyer, T. J. (2017). Standards and tests for lead-acid batteries in automotive applications. Lead-Acid Batteries for Future Automobiles, 551–573. doi:10.1016/b978-0-444-63700-0.00019-2
  • [12] CENELEC, (2015). Lead-Acid Starter Battery-Part 5: Properties of battery housings and handles , EN50342-5, Brussels.
  • [13] Yilmaz, M. (2018). Real measure of a transmission line data with load fore-cast model for the future. Balkan Journal of Electrical and Computer Engineering, 6(2), 141-145.
  • [14] Gündoğdu, A., Fikret, A. T. A., & DANDIL, B. Design of Neuro-Fuzzy Based Torque Controller for Torque Ripple Reduction of Asynchronous Motor. Balkan Journal of Electrical and Computer Engineering, 8(3), 225-234.
  • [15] Batarseh, I. (2011). The Power MOSFET. Power Electronics Handbook, 43–71. doi:10.1016/b978-0-12-382036-5.00004-5
  • [16] Celikel, R. Speed Control of BLDC Using NARMA-L2 Controller in Single Link Manipulator. Balkan Journal of Electrical and Computer Engineering, 7(2), 143-148.

DEVELOPMENT OF A COST-EFFECTIVE HEAVY-DUTY LEAD-ACID BATTERY CAPACITY TESTER

Year 2020, , 378 - 385, 30.12.2020
https://doi.org/10.36222/ejt.840329

Abstract

Batteries are the energy source that provides energy to the vehicle for the first movement. Batteries used in motor vehicles nowadays are usually lead-acid batteries. This paper introduces the basic components of lead-acid batteries and describes the concept of a battery capacity test. The general definition of the standard for testing, EN50342, and the required conditions are presented. Furthermore, a cost-effective capacity tester for heavy-duty lead-acid batteries in compliance with the standard was developed and introduced.

References

  • [1] CENELEC, (2015). Lead-Acid Starter Battery-Part 1: General requirements and methods of test, EN50342-1, Brussels.
  • [2] Richter, G., Meissner, E. (2004). Valve-regulated Lead-Acid Batteries in Automotive Applications — A Battery Manufacturer’s Perspective. Valve-Regulated Lead-Acid Batteries, 397–433. doi:10.1016/b978-044450746-4/50014-3
  • [3] Planté, G. (1860) Comptes Rendus de l’Académie des Sciences. Paris 50, 640-642.
  • [4] Faure, C.A. (1881) Comptes Rendus de l’Académie des Sciences. Paris 92, 951-953
  • [5] Kurzweil, P. (2010). Gaston Planté and his invention of the lead-acid battery – the genesis of the first practical rechargeable battery. Journal of Power Sources, 195 (14), 4424–34. doi: 10.1016/j.jpowsour.2009.12.126
  • [6] Posada, J. O. G., Rennie, A. J. R., Villar, S. P., Martins, V. L., Marinaccio, J., Barnes, A., Hall, P. J. (2017). Aqueous batteries as grid scale energy storage solutions. Renewable and Sustainable Energy Reviews, 68, 1174–1182. doi: 10.1016/j.rser.2016.02.024
  • [7] Torabi, F., Ahmadi, P. (2020). Lead-acid batteries. Simulation of Battery Systems, 149–215. doi:10.1016/b978-0-12-816212-5.00010-6
  • [8] Newman, R. H. (1994). Advantages and disadvantages of valve-regulated, lead/acid batteries. Journal of Power Sources, 52(1), 149–153. doi:10.1016/0378-7753(94)01940-1
  • [9] Kurzweil, P., Garche, J. (2017). Overview of batteries for future automobiles. Lead-Acid Batteries for Future Automobiles, 27–96. doi:10.1016/b978-0-444-63700-0.00002-7
  • [10] Pavlov, D. (2017). Invention and Development of the Lead–Acid Battery. Lead-Acid Batteries: Science and Technology, 3–32. doi:10.1016/b978-0-444-59552-2.00001-8
  • [11] Hildebrandt, T., Osada, A., Peng, S., Moyer, T. J. (2017). Standards and tests for lead-acid batteries in automotive applications. Lead-Acid Batteries for Future Automobiles, 551–573. doi:10.1016/b978-0-444-63700-0.00019-2
  • [12] CENELEC, (2015). Lead-Acid Starter Battery-Part 5: Properties of battery housings and handles , EN50342-5, Brussels.
  • [13] Yilmaz, M. (2018). Real measure of a transmission line data with load fore-cast model for the future. Balkan Journal of Electrical and Computer Engineering, 6(2), 141-145.
  • [14] Gündoğdu, A., Fikret, A. T. A., & DANDIL, B. Design of Neuro-Fuzzy Based Torque Controller for Torque Ripple Reduction of Asynchronous Motor. Balkan Journal of Electrical and Computer Engineering, 8(3), 225-234.
  • [15] Batarseh, I. (2011). The Power MOSFET. Power Electronics Handbook, 43–71. doi:10.1016/b978-0-12-382036-5.00004-5
  • [16] Celikel, R. Speed Control of BLDC Using NARMA-L2 Controller in Single Link Manipulator. Balkan Journal of Electrical and Computer Engineering, 7(2), 143-148.
There are 16 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Article
Authors

Mustafa Ergün 0000-0001-9396-6602

Habib Kaymaz 0000-0002-8338-004X

Ümit Terzi 0000-0001-6739-7717

Irfan Guney 0000-0002-4957-3841

Publication Date December 30, 2020
Published in Issue Year 2020

Cite

APA Ergün, M., Kaymaz, H., Terzi, Ü., Guney, I. (2020). DEVELOPMENT OF A COST-EFFECTIVE HEAVY-DUTY LEAD-ACID BATTERY CAPACITY TESTER. European Journal of Technique (EJT), 10(2), 378-385. https://doi.org/10.36222/ejt.840329

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı