Research Article
BibTex RIS Cite
Year 2020, Volume: 10 Issue: 2, 232 - 241, 30.12.2020
https://doi.org/10.36222/ejt.695179

Abstract

References

  • [1] Wang, H., Zheng, M. (2011). An internal triple-band WLAN antenna. IEEE Antennas and Wireless Propagation Letters, 10, 569-572.
  • [2] Srilakshmil, A., Koteswararao, N. V., Srinivasarao, D. (2011). X band printed microstrip compact antenna with slots in ground plane and patch. Recent Advances in Intelligent Computational Systems, 851-855.
  • [3] Tripathi, A. K., Singh, B. K. (2013). A CPW feed X-band antenna for satellite and RADAR application, International Conference on Microwave and Photonics (ICMAP), 1-3.
  • [4] Sharma, A., Khanna, P., Kumar, A. (2017). A CPW-Fed Structure Shaped Substrate Wideband Microstrip Antenna for Wireless. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16(2), 419-443.
  • [5] Lee, J. H., Yook, J. G. (2010). Improvement of radiation performance of mobile phone antenna using parasitic element. IEEE Transactions on Consumer Electronics, 56(4), 2411–2415.
  • [6] Verma, S., Kumar, P. (2015). Compact arc-shaped antenna with binomial curved conductor-backed plane for multiband wireless applications. IET Microwave Antennas Propagation, 9(4), 351–359.
  • [7] Li, Y., Yu, W. (2015). A miniaturized triple band monopole antenna for WLAN and WiMAX applications. International Journal Antennas Propagation, 1-5.
  • [8] Fadhel, Y. A., Ataş, M., Abdulhakım, R. M. (2017). Miniaturization of a planar strip shaped monopole antenna for WLAN applications. Journal of University of Duhok, 20(1), 77-89.
  • [9] Kaur, J., Khanna, R., Kartikeyan, M. (2013). Novel dual-band multistrip monopole antenna with defected ground structure for WLAN BLUETOOTH WIMAX applications. International Journal Microwave Wireless Technology, 6(1), 1-8.
  • [10] Hirano, T., Takada, J. (2016). Dual band printed inverted F antenna with a nested structure. Progress in Electromagnetic Research Letters, 61, 1-6.
  • [11] Chang, T. H., Kiang, J. F. (2013). Compact multi-band H-shaped slot antenna. IEEE Transactions on Antennas and Propagation, 61(8), 4345-4349.
  • [12] Bhadouria, A. S., Kumar, M. (2014). Microstrip X-band antenna with improvement in performance using DGS. Electrical and Electronic Engineering, 31-35.
  • [13] Ahmad, A., Syeda, F., Naqvi, I., Amin, Y., Tenhunen, H. (2018). Design, fabrication, and measurements of extended L-shaped multiband antenna for wireless applications. Applied Computational Electromagnetics Society Journal (ACES), 33(4), 388-393.
  • [14] ***,Available Radio Frequency, https://www.everythingrf.com/community/ism-frequency-bands
  • [15] Sharawi, M. S., Khan, M. U., Numan, A. B., Aloi, D. N. (2013). A CSRR loaded MIMO antenna system for ISM band operation. IEEE Transactions on Antennas and Propagation, 61(8), 4265-4274.
  • [16] Sobhani, M. R., Majidi, N., Imeci, Ş. T. (2018). Design and Implementation of a Quad Element Patch Antenna at 5.8 GHz. Applied Computational Electromagnetics Society Journal (ACES), 33(10), 1131-1134.
  • [17] Datta, B., Das, A., Kundu, A., Chatterjee, S., Mukherjee, M., Chowdhury, S. K. (2013). Twice-band irregular rectangular cut in microstrip patch antenna for microwave communication. International Conference on Information Communication and Embedded System, 598-602.
  • [18] Khan, M. U., Sharawi, M. S., Mittra, R. (2015). Microstrip patch antenna miniaturization techniques: A Review. IET Microwaves, Antennas & Propagation, 9(9), 913–922.
  • [19] Islam, M. T., Samsuzzaman, M. (2014). Miniaturized dual band multi slotted patch antenna on poly tetra fluoroethylene glass microfiber reinforced for C/X band applications. Hindawi Publishing Corporation the Scientific World Journal, 1-14.
  • [20] Balanis, C. A., Antenna Theory, Analysis and Design, John Wiley and Sons Inc., New York, USA, 2005
  • [21] Pozar, D. M., Schaubert, D. H., Microstrip Antennas, the Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, New York, USA.1995
  • [22] High Frequency Structure Simulation (HFSS), v. 15.2, Ansoft ANSYS, 2015.
  • [23] Elboushi, A., Sebak, A. R. (2014). High gain hybrid DRA / horn antenna for MMW applications. IEEE Antennas and Propagation Society International Symposium (APSURSI), 909-913.
  • [24] Zhang, H., Zhou, U., Wu, Z., Xin, H., Ziolkowski, R. V. (2010). Designs of ultra wideband (UWB) printed elliptical monopole. Microwave and Optical Technology Letters, 52, 466–471.
  • [25] Rakholiya, A. A., Langhnoja, N. V. (2017). A review on miniaturization techniques for microstrip patch antenna. International Journal of Advance Research and Innovative Ideas in Education, 3(2), 4281-4287.
  • [26] Ataş, İ., Kurt, M. B., Abbasov, T. (2019). Development of a High Gain, Double Band and Two Layer Miniaturized Microstrip Antenna for 5.8 GHz ISM and 10 GHz X Band Applications. Applied Computational Electromagnetics Society (ACES), 34(10), 1568-1575.
  • [27] Zaman, M. R., Islam, M. T., Misran, N., Mandeep, J. S. (2014). Analysis of resonance response performance of C band antenna using parasitic element. Hindawi Publishing Corporation the Scientific World Journal, 1-10.
  • [28] Shu, P., Feng, Q. (2013). Design of a compact quad-band hybrid antenna for compass WiMAX WLAN applications. Progress In. Electromagnetics Research, 138, 585–598.
  • [29] Naji, D. K. (2016). Compact Design of Dual-band Fractal Ring Antenna for WiMAX and WLAN Applications. International Journal of Electromagnetics and Applications, 6(2), 42-50.
  • [30] Tripathi, S., Saxena, E. R., Kumar, E. M., Jaiswal, A. K. (2018). Performance of microstrip patch antenna for dual band application. International Journal of Engineering and Techniques, 4(1), 193-198.
  • [31] Jo, S., Choi, H., Shin, B., Oh, S., Lee, J. (2014). A CPW-fed rectangular ring monopole antenna for WLAN applications. International Journal of Antennas and Propagation, 1-6.

GAIN ENHANCEMENT AND MINIATURIZATION OF DUAL-BAND COMPACT PATCH ANTENNA

Year 2020, Volume: 10 Issue: 2, 232 - 241, 30.12.2020
https://doi.org/10.36222/ejt.695179

Abstract

In this study, how to increase the dual-band Patch Antenna (PA) gain for the performance improvement of PAs is explained step by step. In addition, a novel method was added for further miniaturization and gain enhancement of the PA. Low cost FR4 substrate was preferred for the design and production of this model. The performance of the proposed antenna was evaluated in terms of Return Loss (RL), surface current distribution, gain and radiation efficiency. For this purpose, HFSS which is a commercial software and that solves electromagnetic structures by finite element method was used in modeling and design steps. The prototype of the produced antenna was measured with a vector network analyzer and the output characteristics were evaluated. The measurement and simulation results of this antenna were found to be consistent and comparable. The peak gain values of the proposed antenna at 5.8 GHz and 10 GHz were obtained as 2.88 dBi and 7.24 dBi, respectively.

References

  • [1] Wang, H., Zheng, M. (2011). An internal triple-band WLAN antenna. IEEE Antennas and Wireless Propagation Letters, 10, 569-572.
  • [2] Srilakshmil, A., Koteswararao, N. V., Srinivasarao, D. (2011). X band printed microstrip compact antenna with slots in ground plane and patch. Recent Advances in Intelligent Computational Systems, 851-855.
  • [3] Tripathi, A. K., Singh, B. K. (2013). A CPW feed X-band antenna for satellite and RADAR application, International Conference on Microwave and Photonics (ICMAP), 1-3.
  • [4] Sharma, A., Khanna, P., Kumar, A. (2017). A CPW-Fed Structure Shaped Substrate Wideband Microstrip Antenna for Wireless. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16(2), 419-443.
  • [5] Lee, J. H., Yook, J. G. (2010). Improvement of radiation performance of mobile phone antenna using parasitic element. IEEE Transactions on Consumer Electronics, 56(4), 2411–2415.
  • [6] Verma, S., Kumar, P. (2015). Compact arc-shaped antenna with binomial curved conductor-backed plane for multiband wireless applications. IET Microwave Antennas Propagation, 9(4), 351–359.
  • [7] Li, Y., Yu, W. (2015). A miniaturized triple band monopole antenna for WLAN and WiMAX applications. International Journal Antennas Propagation, 1-5.
  • [8] Fadhel, Y. A., Ataş, M., Abdulhakım, R. M. (2017). Miniaturization of a planar strip shaped monopole antenna for WLAN applications. Journal of University of Duhok, 20(1), 77-89.
  • [9] Kaur, J., Khanna, R., Kartikeyan, M. (2013). Novel dual-band multistrip monopole antenna with defected ground structure for WLAN BLUETOOTH WIMAX applications. International Journal Microwave Wireless Technology, 6(1), 1-8.
  • [10] Hirano, T., Takada, J. (2016). Dual band printed inverted F antenna with a nested structure. Progress in Electromagnetic Research Letters, 61, 1-6.
  • [11] Chang, T. H., Kiang, J. F. (2013). Compact multi-band H-shaped slot antenna. IEEE Transactions on Antennas and Propagation, 61(8), 4345-4349.
  • [12] Bhadouria, A. S., Kumar, M. (2014). Microstrip X-band antenna with improvement in performance using DGS. Electrical and Electronic Engineering, 31-35.
  • [13] Ahmad, A., Syeda, F., Naqvi, I., Amin, Y., Tenhunen, H. (2018). Design, fabrication, and measurements of extended L-shaped multiband antenna for wireless applications. Applied Computational Electromagnetics Society Journal (ACES), 33(4), 388-393.
  • [14] ***,Available Radio Frequency, https://www.everythingrf.com/community/ism-frequency-bands
  • [15] Sharawi, M. S., Khan, M. U., Numan, A. B., Aloi, D. N. (2013). A CSRR loaded MIMO antenna system for ISM band operation. IEEE Transactions on Antennas and Propagation, 61(8), 4265-4274.
  • [16] Sobhani, M. R., Majidi, N., Imeci, Ş. T. (2018). Design and Implementation of a Quad Element Patch Antenna at 5.8 GHz. Applied Computational Electromagnetics Society Journal (ACES), 33(10), 1131-1134.
  • [17] Datta, B., Das, A., Kundu, A., Chatterjee, S., Mukherjee, M., Chowdhury, S. K. (2013). Twice-band irregular rectangular cut in microstrip patch antenna for microwave communication. International Conference on Information Communication and Embedded System, 598-602.
  • [18] Khan, M. U., Sharawi, M. S., Mittra, R. (2015). Microstrip patch antenna miniaturization techniques: A Review. IET Microwaves, Antennas & Propagation, 9(9), 913–922.
  • [19] Islam, M. T., Samsuzzaman, M. (2014). Miniaturized dual band multi slotted patch antenna on poly tetra fluoroethylene glass microfiber reinforced for C/X band applications. Hindawi Publishing Corporation the Scientific World Journal, 1-14.
  • [20] Balanis, C. A., Antenna Theory, Analysis and Design, John Wiley and Sons Inc., New York, USA, 2005
  • [21] Pozar, D. M., Schaubert, D. H., Microstrip Antennas, the Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, New York, USA.1995
  • [22] High Frequency Structure Simulation (HFSS), v. 15.2, Ansoft ANSYS, 2015.
  • [23] Elboushi, A., Sebak, A. R. (2014). High gain hybrid DRA / horn antenna for MMW applications. IEEE Antennas and Propagation Society International Symposium (APSURSI), 909-913.
  • [24] Zhang, H., Zhou, U., Wu, Z., Xin, H., Ziolkowski, R. V. (2010). Designs of ultra wideband (UWB) printed elliptical monopole. Microwave and Optical Technology Letters, 52, 466–471.
  • [25] Rakholiya, A. A., Langhnoja, N. V. (2017). A review on miniaturization techniques for microstrip patch antenna. International Journal of Advance Research and Innovative Ideas in Education, 3(2), 4281-4287.
  • [26] Ataş, İ., Kurt, M. B., Abbasov, T. (2019). Development of a High Gain, Double Band and Two Layer Miniaturized Microstrip Antenna for 5.8 GHz ISM and 10 GHz X Band Applications. Applied Computational Electromagnetics Society (ACES), 34(10), 1568-1575.
  • [27] Zaman, M. R., Islam, M. T., Misran, N., Mandeep, J. S. (2014). Analysis of resonance response performance of C band antenna using parasitic element. Hindawi Publishing Corporation the Scientific World Journal, 1-10.
  • [28] Shu, P., Feng, Q. (2013). Design of a compact quad-band hybrid antenna for compass WiMAX WLAN applications. Progress In. Electromagnetics Research, 138, 585–598.
  • [29] Naji, D. K. (2016). Compact Design of Dual-band Fractal Ring Antenna for WiMAX and WLAN Applications. International Journal of Electromagnetics and Applications, 6(2), 42-50.
  • [30] Tripathi, S., Saxena, E. R., Kumar, E. M., Jaiswal, A. K. (2018). Performance of microstrip patch antenna for dual band application. International Journal of Engineering and Techniques, 4(1), 193-198.
  • [31] Jo, S., Choi, H., Shin, B., Oh, S., Lee, J. (2014). A CPW-fed rectangular ring monopole antenna for WLAN applications. International Journal of Antennas and Propagation, 1-6.
There are 31 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Article
Authors

İsa Ataş 0000-0003-4094-9598

Teymuraz Abbasov 0000-0002-0290-8333

Muhammed Bahaddin Kurt 0000-0001-6983-2081

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Ataş, İ., Abbasov, T., & Kurt, M. B. (2020). GAIN ENHANCEMENT AND MINIATURIZATION OF DUAL-BAND COMPACT PATCH ANTENNA. European Journal of Technique (EJT), 10(2), 232-241. https://doi.org/10.36222/ejt.695179

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı