Research Article
BibTex RIS Cite

THE EFFECTS OF ACID CONCENTRATION, ETCHING TEMPERATURE AND TIME ON THE SURFACE MORPHOLOGIES OF TI6AL4V

Year 2020, Volume: 10 Issue: 2, 386 - 394, 30.12.2020
https://doi.org/10.36222/ejt.705162

Abstract

Within this work, the effect of etching parameters on the surface morphology of Ti6Al4V alloy was investigated. For this purpose, different temperatures, different proportions of HCl-H2SO4 acid mixtures and different etching times were used for the etching process. After etching, XRD analyses, SEM images and surface roughness values of the samples were presented. It was observed that increasing etching temperature facilitated the formation of pore structure on the surface, but after a certain temperature, the increasing temperature started to show negative effects. When all the microstructure images are considered, it is understood that acid concentration and etching time are effective parameters besides temperature difference.

Supporting Institution

Manisa Celal Bayar University Coordination Department of Scientific Research Projects and he Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

BAP 2017-177 and Grant No. 2228-B.2015-1

Thanks

The authors thank to MCBU Coordination Department of Scientific Research Projects (Project: CBU-BAP 2017-177) for their financial support. In addition, the financial support supplied by The Scientific and Technological Research Council of Turkey (TUBITAK, Turkey) [Grant No. 2228-B.2015-1] for the first author was gratefully acknowledged.

References

  • [1] Götz, H.E., Müller, M., Emmel, A., Holzwarth, U., Erben, R.G., Stangl, R.(2004).Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials, 25(18), pp. 4057-4064.
  • [2] Uchida, M., Oyane, A., Kim, H.‐M., Kokubo, T., and Ito, A. (2004). Biomimetic coating of laminin-apatite composite on titanium metal and its excellent cell-adhesive properties. Advanced Materials, 16(13), pp. 1071-1074.
  • [3] Dai, X., Zhang, X., Xu, M., Huang, Y., Heng, B.C., Mo, X., Liu, Y., Wei, D., Zhou, Y., Wei, Y., Deng, X., Deng X. (2016). Synergistic effects of elastic modulus and surface topology of Ti-based implants on early osseointegration. RSC Advances, 6, pp. 43685-43696.
  • [4] Dhaliwal, J.S., Rahman, N.A., Knights, J., Ghani, H., Junior, R.F.A. (2019). The effect of different surface topographies of titanium implants on bacterial biofilm: a systematic review. SN Applied Sciences,1, Article Number: 615.
  • [5] Zinger, O., Anselme, K., Denzer, A., Habersetzer, P., Wieland, M., Jeanfils, J., Hardouin, P., Landolt, D. (2004). Time-dependent morphology and adhesion of osteoblastic cells ontitanium model surfaces featuring scale-resolved topography. Biomaterials, 25, pp. 2695–2711.
  • [6] Kelly, C.N., Evans, N. T., Irvin, C.W., Chapmand, S.C., Galle, K., Safranskif, D.L. (2019). The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Materials Science & Engineering C, 98, pp. 726–736.
  • [7] Mendonça, G., Mendonça, D.B.S., Araga˜o, F.J.L., Cooper, L.F.(2008). Advancing dental implant surface technology – From micron to nanotopography. Biomaterials, 29, pp. 3822–3835.
  • [8] Guéhennec, L.L., Soueidan, A., Layrolle, P., Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23 (7), pp. 844-854.
  • [9] Degidi, M., Petrone, G., Iezzi, G., Piattelli, A. (2003). Bone contact around acid etched implants: a histological and histomorphometrical evaluation of two human retrieved implants. Journal of Oral Implantology, 29 (1), pp. 13-18.
  • [10] Pippenger, B. E., Rottmar, M., Kopf, B.S., Stübinger, S., Torre, F.H.D., Berner, S., Weber, K. M. (2018). Surface modification of ultrafine‐grained titanium: Influence on mechanical properties, cytocompatibility, and osseointegration potential. Wiley Clinical Oral İmplants Research, https://doi.org/10.1111/clr.13396
  • [11] Suzuki, G., Hirota, M., Hoshi, N., Kimoto, K., Miura, H., Yoshinar, M., Hayakawa, T., Ohkubo, C. (2019). Effect of Surface Treatment of Multi-Directionally Forged (MDF) Titanium Implant on Bone Response, Metals, 9(2), Article Number: 230.
  • [12] Souza, J.C.M., Sordi, M.B., Kanazawa, M., Ravindran, S., Henriques, B., Silva, F.S., Aparicio, C., Cooper, L.F. (2019). Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia, 94, pp. 112-131.
  • [13] Bornstein, M.M., Lussi, A., Schmid, B., Belser, U.C., Buser, D. (2003). Early loading of nonsubmerged titanium implants with a sandblasted and acid-etched (SLA) surface: 3-Year results of a prospective study in partially edentulous patients. International Journal of Oral and Maxillofacial Implants, 18 (5), pp. 659-666.
  • [14] Jungner, M., Lundqvist, P. Lundgren, S. (2005). Oxidized titanium implants (Nobel Biocare® TiUnite™) compared with turned titanium implants (Nobel Biocare® mark III™) with respect to implant failure in a group of consecutive patients treated with early functional loading and two stage protocol. Clinical Oral Implants Research, 16 (3), pp. 308-312.
  • [15] Parekh, R. B., Shetty, O., Tabassum, R. (2012). Surface modifications of endosseous dental implants. International Journal of Oral Implantology & Clinical Research, 3 (3), pp. 116-121.
  • [16] Hung, K.Y., Lin, Y.C., and Feng, H.P. (2017). The effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials. Materials, 10, pp. 1164–1178.
  • [17] Chauhan, P., Koul, V., and Bhatnagar, N. (2019). Effect of acid etching temperature on surface physiochemical properties and cytocompatibility of Ti6Al4V ELI alloy. Materials Research Express, 6(10), Article Number:105412.
Year 2020, Volume: 10 Issue: 2, 386 - 394, 30.12.2020
https://doi.org/10.36222/ejt.705162

Abstract

Project Number

BAP 2017-177 and Grant No. 2228-B.2015-1

References

  • [1] Götz, H.E., Müller, M., Emmel, A., Holzwarth, U., Erben, R.G., Stangl, R.(2004).Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials, 25(18), pp. 4057-4064.
  • [2] Uchida, M., Oyane, A., Kim, H.‐M., Kokubo, T., and Ito, A. (2004). Biomimetic coating of laminin-apatite composite on titanium metal and its excellent cell-adhesive properties. Advanced Materials, 16(13), pp. 1071-1074.
  • [3] Dai, X., Zhang, X., Xu, M., Huang, Y., Heng, B.C., Mo, X., Liu, Y., Wei, D., Zhou, Y., Wei, Y., Deng, X., Deng X. (2016). Synergistic effects of elastic modulus and surface topology of Ti-based implants on early osseointegration. RSC Advances, 6, pp. 43685-43696.
  • [4] Dhaliwal, J.S., Rahman, N.A., Knights, J., Ghani, H., Junior, R.F.A. (2019). The effect of different surface topographies of titanium implants on bacterial biofilm: a systematic review. SN Applied Sciences,1, Article Number: 615.
  • [5] Zinger, O., Anselme, K., Denzer, A., Habersetzer, P., Wieland, M., Jeanfils, J., Hardouin, P., Landolt, D. (2004). Time-dependent morphology and adhesion of osteoblastic cells ontitanium model surfaces featuring scale-resolved topography. Biomaterials, 25, pp. 2695–2711.
  • [6] Kelly, C.N., Evans, N. T., Irvin, C.W., Chapmand, S.C., Galle, K., Safranskif, D.L. (2019). The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Materials Science & Engineering C, 98, pp. 726–736.
  • [7] Mendonça, G., Mendonça, D.B.S., Araga˜o, F.J.L., Cooper, L.F.(2008). Advancing dental implant surface technology – From micron to nanotopography. Biomaterials, 29, pp. 3822–3835.
  • [8] Guéhennec, L.L., Soueidan, A., Layrolle, P., Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23 (7), pp. 844-854.
  • [9] Degidi, M., Petrone, G., Iezzi, G., Piattelli, A. (2003). Bone contact around acid etched implants: a histological and histomorphometrical evaluation of two human retrieved implants. Journal of Oral Implantology, 29 (1), pp. 13-18.
  • [10] Pippenger, B. E., Rottmar, M., Kopf, B.S., Stübinger, S., Torre, F.H.D., Berner, S., Weber, K. M. (2018). Surface modification of ultrafine‐grained titanium: Influence on mechanical properties, cytocompatibility, and osseointegration potential. Wiley Clinical Oral İmplants Research, https://doi.org/10.1111/clr.13396
  • [11] Suzuki, G., Hirota, M., Hoshi, N., Kimoto, K., Miura, H., Yoshinar, M., Hayakawa, T., Ohkubo, C. (2019). Effect of Surface Treatment of Multi-Directionally Forged (MDF) Titanium Implant on Bone Response, Metals, 9(2), Article Number: 230.
  • [12] Souza, J.C.M., Sordi, M.B., Kanazawa, M., Ravindran, S., Henriques, B., Silva, F.S., Aparicio, C., Cooper, L.F. (2019). Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia, 94, pp. 112-131.
  • [13] Bornstein, M.M., Lussi, A., Schmid, B., Belser, U.C., Buser, D. (2003). Early loading of nonsubmerged titanium implants with a sandblasted and acid-etched (SLA) surface: 3-Year results of a prospective study in partially edentulous patients. International Journal of Oral and Maxillofacial Implants, 18 (5), pp. 659-666.
  • [14] Jungner, M., Lundqvist, P. Lundgren, S. (2005). Oxidized titanium implants (Nobel Biocare® TiUnite™) compared with turned titanium implants (Nobel Biocare® mark III™) with respect to implant failure in a group of consecutive patients treated with early functional loading and two stage protocol. Clinical Oral Implants Research, 16 (3), pp. 308-312.
  • [15] Parekh, R. B., Shetty, O., Tabassum, R. (2012). Surface modifications of endosseous dental implants. International Journal of Oral Implantology & Clinical Research, 3 (3), pp. 116-121.
  • [16] Hung, K.Y., Lin, Y.C., and Feng, H.P. (2017). The effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials. Materials, 10, pp. 1164–1178.
  • [17] Chauhan, P., Koul, V., and Bhatnagar, N. (2019). Effect of acid etching temperature on surface physiochemical properties and cytocompatibility of Ti6Al4V ELI alloy. Materials Research Express, 6(10), Article Number:105412.
There are 17 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Melis Yurddaskal 0000-0002-8774-3848

Hülya Durmuş 0000-0002-7270-562X

Project Number BAP 2017-177 and Grant No. 2228-B.2015-1
Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Yurddaskal, M., & Durmuş, H. (2020). THE EFFECTS OF ACID CONCENTRATION, ETCHING TEMPERATURE AND TIME ON THE SURFACE MORPHOLOGIES OF TI6AL4V. European Journal of Technique (EJT), 10(2), 386-394. https://doi.org/10.36222/ejt.705162

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı