Although determining emotional states from brain dynamics has been a subject that has been studied for a long time, the desired level has not been reached yet. In this study, Empirical mode decomposition (EMD) based Local Binary Pattern (LBP) method is proposed for emotional determination using (positive-neutral-negative) Electroencephalogram (EEG) signals. Thanks to this method, a hybrid structure was created in obtaining features from EEG signals. In the study, Seed EEG dataset containing 15 positive subjects and positive-neutral-negative emotional state is used. In the study, classification is utilized with the basis of individuals by using 27 EEG channels in the left hemisphere of each subject. Level 5 was separated by applying EMD to EEG segments containing three emotional states. Features were obtained from the Intrinsic mode function (IMF) using LBP method. These features are classified with k Nearest Neighbor (k-NN) and Artificial Neural Network (ANN). The average classification accuracy for 15 participants was 83.77% using the k-NN classifier and 84.50% with the ANN classifier. In addition, the highest classification performance was found to be 96.75% with the k-NN classifier. The results obtained in the study support similar studies in the literature.
Primary Language | English |
---|---|
Subjects | Computer Software |
Journal Section | Research Article |
Authors | |
Publication Date | December 30, 2020 |
Published in Issue | Year 2020 Volume: 10 Issue: 2 |
All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.