The evolution of statistical methodologies for research analysis has notably contributed to the diversification of analytical and predictive techniques. Notably, machine learning, which leverages mathematical and statistical approaches to draw meaningful inferences from data, has made remarkable strides in artificial intelligence,generating predictions based on these inferences.Encompassing a spectrum of algorithms that transform datasets into models, machine learning emerges as a cornerstone in analytical and predictive processes. Herein, weproduce high-accuracy buying and selling signals in the cryptomarket—a market that continuously operates 24 h a day. This is achieved by integrating MACD (Moving Average Convergence Divergence) parameters optimized with a genetic algorithm specific tothe cryptocurrency market, machinelearning methods, and technical analysis indicators. Contextually, we compared the performances of different machine learning algorithms. Using genetic algorithm optimization, we identified the most suitable model.Results underscore the enhanced profitability of trades executed with optimized MACD parameterscompared with those executed using nonoptimizedMACD parameters. Themodel performed optimallyon the LTCUSDT pair. Notably,the deep learning algorithm exhibitedbetter profitability in the LTCUSDT pair.However, its effectiveness in generating profits in the ADAUSDT pair was somewhere limited;this can be attributed to the high volatility, instability, and rapid response of the cryptomarket to current news, whether positive or negative. Therefore,the developed model fits different cryptocurrency pairs to varying degrees.
Araştırma alanında kullanılan analiz yöntemlerine yönelik istatistiksel metotların gelişmesi, analiz ve öngörü tekniklerinin çeşitlenmesine önemli bir katkıda bulunmuştur. Bu kapsamda, özellikle matematiksel ve istatistiksel metodolojiler kullanarak verilerden anlamlı çıkarımlar yapabilen ve bu çıkarımları kullanarak birtakım tahminlerde bulunan makine öğrenmesi, yapay zekâ alanında önemli bir gelişme kaydetmiştir. Makine öğrenmesi, bir veri setini modele dönüştüren çeşitli algoritmaları kapsar ve bu algoritmalar, analiz ve öngörü süreçlerinde temel bir disiplin olarak öne çıkmaktadır. Bu çalışma, kripto para piyasasında genetik algoritma ile optimize edilmiş MACD parametrelerini, makine öğrenmesi yöntemleri ve teknik analiz göstergeleri ile birleştirerek, 24 saat sürekli işlem gören kripto piyasasında yüksek doğrulukta alım ve satım sinyalleri üretmeyi amaçlamaktadır. Bu bağlamda farklı makine öğrenmesi algoritmalarının performansları karşılaştırılmış ve genetik algoritma ile optimize edilerek en uygun modele ulaşılmaya çalışılmıştır. Sonuç olarak, optimize edilmiş MACD parametreleri kullanılarak yapılan işlemlerin, optimize edilmemiş MACD parametreleriyle yapılanlardan daha iyi kârlılık sağladığı gözlemlenmiştir. Modelin, LTCUSDT çiftinde daha iyi performans sergilediği sonucuna varılmıştır. Özellikle derin öğrenme algoritmasının LTCUSDT paritesinde daha iyi kâr elde edebildiği ancak, modelin ADAUSDT çiftinde kâr elde edemediği görülmüştür. Bunun sebebi de kripto piyasasının volatilitesinin yüksek, istikrarsız ve güncel haberlere olumlu/olumsuz çok hızlı tepki vermesinden kaynaklanmaktadır. Buradan yola çıkarak geliştirilen modelin farklı kripto para çiftlerine farklı derecelerde uyduğu sonucuna varılmıştır.
Primary Language | Turkish |
---|---|
Subjects | Statistics (Other) |
Journal Section | RESEARCH ARTICLE |
Authors | |
Publication Date | June 26, 2024 |
Submission Date | December 28, 2023 |
Acceptance Date | February 29, 2024 |
Published in Issue | Year 2024 Issue: 40 |