Review
BibTex RIS Cite

Artificial Intelligence in Higher Education: Teaching, Research and Community Service Perspectives

Year 2024, Volume: 20 Issue: 2, 29 - 45, 31.12.2024
https://doi.org/10.17244/eku.1457088

Abstract

In an era marked by rapid technological advancements, the integration of artificial intelligence (AI) has become increasingly widespread across various sectors, creating many situations that require change in the way we live, work and interact. One of the areas where AI is poised to have a profound impact is higher education. This research examines various aspects of the use of AI in the context of the teaching, research and community service roles of higher education. The prominent aspects of AI in the teaching function of higher education can be categorized as individualized learning, adaptive assessment, virtual assistants and content creation. The important aspects of AI in the research role of higher education can be categorized as literature review, hypothesis generation, experiment optimization and data analysis. In addition, in the community service function of higher education, AI draws particular attention in areas such as community needs assessment, participation and collaboration of stakeholders and sustainability. The limitations of AI in higher education are data privacy, data quality and integrity, algorithmic bias, pedagogical autonomy and human-centered approach/empathy. Therefore, while AI has great potential to create innovation in higher education, its limitations need to be carefully assessed and proactive measures need to be taken to mitigate the associated risks.

References

  • Abgaryan, H., Asatryan, S., & Matevosyan, A. (2023). Revolutionary changes in higher education with artificial intelligence. Main Issues Of Pedagogy And Psychology, 10(1), 76-86.
  • Altbach, P.G. (1996). The international academic profession: Portraits of fourteen countries. Jossey-Bass Publishers.
  • Antonio A. L., Astin, H. S., & Cress C. M. (2000). Community service in higher education: A look at the nation’s faculty. The Review of Higher Education, 23, 373–397.
  • Arslan, F., & Kahraman, H. T. (2019). Yapay zekâ tabanlı büyük veri yönetim aracı. Journal of Investigations on Engineering and Technology, 2(1), 8-21.
  • Atalay, M., & Çelik, E. (2017). Büyük veri analizinde yapay zekâ ve makine öğrenmesi uygulamaları - Artificial intelligence and machine learning applications in big data analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(22), 155-172.
  • Bates, T., Cobo, C., Mariño, O., & Wheeler, S. (2020). Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education, 17(1), 1–12. https://doi.org/10.1186/s41239-020-00218-x.
  • Bearman, M., & Ajjawi, R. (2023). Learning to work with the black box: Pedagogy for a world with artificial intelligence. British Journal of Educational Technology, 54(5), 1160–1173. Doi:10.1111/bjet.13337.
  • Bu, Q. (2022). Ethical risks in integrating artificial intelligence into education and potential countermeasures. Science Insights, 41(1), 561. https://doi.org/10.15354/si.22.re067.
  • Castañeda, L., & Selwyn, N. (2018). More than tools? Making sense of he ongoing digitizations of higher education. International Journal of Educational Technology in Higher Education, 15(22). https://doi.org/10.1186/s41239-018-0109-y.
  • Chan, C. K. Y. (2023). A comprehensive AI policy education framework for university teaching and learning. International journal of educational technology in higher education, 20(1), 38.
  • Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2023). Artificial intelligence (AI) student assistants in the classroom: Designing chatbots to support student success. Information Systems Frontiers, 25(1), 161-182.
  • Dempere, J., Modugu, K., Hesham A, & Ramasamy, L. K. (2023). The impact of ChatGPT on higher education. Frontiers in Education, 8, 1206936. 10.3389/feduc.2023.1206936.
  • Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71.
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994.
  • Eager, B., & Brunton, R. (2023). Prompting higher education towards AI-augmented teaching and learning practice. Journal of University Teaching & Learning Practice, 20(5), 02.
  • Extance, A. (2018). How AI technology can tame the scientific literature. Nature, 561(7722), 273-275.
  • Felzmann, H., Villaronga, E. F., Lutz, C., & Tamò-Larrieux, A. (2019). Transparency you can trust: Transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data & Society, 6(1), 2053951719860542.
  • Garcez, A. D. A., Bader, S., Bowman, H., Lamb, L. C., de Penning, L., Illuminoo, B. V., ... & Zaverucha, C. G. (2022). Neural-symbolic learning and reasoning: A survey and interpretation. Neuro-Symbolic Artificial Intelligence: The State of the Art, 342(1), 327.
  • George, A. H., Shahul, A., & George, A. S. (2023). Artificial intelligence in medicine: A New way to diagnose and treat disease. Partners Universal International Research Journal, 2(3), 246-259.
  • George, B., & Wooden, O. (2023). Managing the strategic transformation of higher education through artificial intelligence. Administrative Sciences, 13(9), 196.
  • Göçen, A., & Aydemir, F. (2021). Artificial intelligence in education and schools. Research on Education and Media, 12(1), 13–21. https://doi.org/10.2478/rem-2020-0003.
  • Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2015). NMC Horizon report: 2015 Higher education edition. The New Media Consortium.
  • Hashim, S., Omar, M. K., Ab Jalil, H., & Sharef, N. M. (2022). Trends on technologies and artificial intelligence in education for personalized learning: systematic literature. Journal of Academic Research in Progressive Education and Development, 12(1), 884-903.
  • Hollander, J. B., Potts, R., Hartt, M., & Situ, M. (2020). The role of artificial intelligence in community planning. International Journal of Community Well-Being, 3(4), 507-521.
  • Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign.
  • Kacena, M. A., Plotkin, L. I., & Fehrenbacher, J. C. (2024). The use of artificial intelligence in writing scientific review articles. Current Osteoporosis Reports, 1-7.
  • Kamalov, F., Calonge, D. S., & Gurrib, I. (2023). New era of Artificial intelligence in education: Towards a sustainable multifaceted revolution. Sustainability, 15(16), 1–27.
  • Kearney, M-L. (2009). Higher education, research and innovation: Charting the course of the changing dynamics of the knowledge society. V.L. Meek, U. Teichler, & M-L. Kearney (Ed.), Higher education, research and innovation: Changing dynamics içinde (ss. 7-23). INCHER and UNESCO.
  • Khurana, V. (2024). Accelerating pace of scientific discovery and innovation through big data enabled artificial intelligence and deep learning. Emerging Trends in Machine Intelligence and Big Data, 16(1), 38-53.
  • Korteling, J. H., van de Boer-Visschedijk, G. C., Blankendaal, R. A., Boonekamp, R. C., & Eikelboom, A. R. (2021). Human-versus artificial intelligence. Frontiers in Artificial Intelligence, 4, 622364.
  • Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M., Păun, D., & Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability, 13(18), 10424.
  • Kumar, P. (2019). Artificial intelligence: Reshaping life and business. BPB Publications.
  • Liu, T., Gao, Z., & Guan, H. (2021). Educational information system optimization for artificial intelligence teaching strategies. Complexity, 1-13.
  • Marginson S. (2011). Higher education and public good. Higher Education Quarterly, 65, 411–433.
  • Markauskaite, L., Marrone, R., Poquet, O., Knight, S., Martinez-Maldonado, R., Howard, S., Tondeur, J., De Laat, M., Buckingham Shum, S., Gašević, D., & Siemens, G. (2022). Rethinking the entwinement between artificial intelligence and human learning: What capabilities do learners need for a world with AI? Computers and Education: Artificial Intelligence, 3, 100056. https://doi.org/10.1016/j.caeai.2022.100056.
  • Nassar, A., & Kamal, M. (2021). Ethical dilemmas in AI-powered decision-making: a deep dive into big data-driven ethical considerations. International Journal of Responsible Artificial Intelligence, 11(8), 1-11.
  • Nieto, Y., García-Díaz, V., Montenegro, C., & Crespo, R. G. (2019). Supporting academic decision making at higher educational institutions using machine learning-based algorithms. Soft Computing, 23(12), 4145. https://doi.org/10.1007/s00500-0183064-6.
  • Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104.
  • Pedro, F. (2020). Applications of artificial intelligence to higher education: Possibilities, evidence, and challenges. IUL Research, 1(1), 61. https://doi.org/10.57568/iulres.v1i1.43.
  • Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education?. Journal of applied learning and teaching, 6(1), 342-363.
  • Rodway, P., & Schepman, A. (2023). The impact of adopting AI educational technologies on projected course satisfaction in university students. Computers and Education: Artificial Intelligence, 5, 100150.
  • Shneiderman, B. (2020). Human-centered artificial intelligence: Three fresh ideas. AIS Transactions on Human-Computer Interaction, 12(3), 109-124.
  • Srikanthan, G., & Dalrymple, J. (2002). Developing a holistic model for quality in higher education. Quality in Higher Education, 8(3), 215–224.
  • Taşçı, G., & Çelebi, M. (2020). Eğitimde yeni bir paradigma: Yükseköğretimde yapay zekâ. OPUS International Journal of Society Researches, 16(29), 2346. https://doi.org/10.26466/opus.747634.
  • Turan, T., Turan, G., & Küçüksille, E. (2022). Yapay zekâ etiği: Toplum üzerine etkisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 292-299.
  • Salmi, J. (2001). Tertiary education in the 21st century: Challenges and opportunities. Higher Education Management, 13(2), 105 128.
  • Scherer, M. U. (2015). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law & Technology, 29, 353.
  • Singh, R. J. (2023). Transforming higher education: The power of artificial intelligence. International Journal of Multidisciplinary Research in Arts, Science and Technology, 1(3), 13-18.
  • Slimi, Z. (2023). The impact of artificial intelligence on higher education: An empirical study. European Journal of Educational Sciences, 10(1), 17-33.
  • Sun, W., Bocchini, P., & Davison, B. D. (2020). Applications of artificial intelligence for disaster management. Natural Hazards, 103(3), 2631-2689.
  • Tiwari, R. (2023). The integration of AI and machine learning in education and its potential to personalize and improve student learning experiences. International Journal of Scientific Research in Engineering and Management, 7(2), 1. https://doi.org/10.55041/ijsrem17645.
  • Uslu, B. (2023). Üniversitelerde yapay zekanın kullanım alanları: Potansiyel yararları ve olası zorluklar. Eğitimde Kuram ve Uygulama, 19(2), 227-239. https://doi.org/10.17244/eku.1355304.
  • Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the sustainable development goals. Nature Communications, 11(1), 1-10.
  • Vishwakarma, L. P., Singh, R. K., Mishra, R., & Kumari, A. (2023). Application of artificial intelligence for resilient and sustainable healthcare system: Systematic literature review and future research directions. International Journal of Production Research, 1-23.
  • Waghid, Y. (2002). Knowledge production and higher education transformation in South Africa: Towards reflexivity in university teaching, research and community service. Higher Education, 43(4), 457–488. https://doi.org/10.1023/A:1015211718131.
  • Wang, Y. (2021). Artificial intelligence in educational leadership: A symbiotic role of human-artificial intelligence decision-making. Journal of Educational Administration, 59(3), 256-270.
  • Yang, S., & Evans, C. (2019). Opportunities and challenges in using AI chatbots in higher education. Proceedings of The 3rd International Conference on Education and E-Learning (ICEEL'19) (pp. 79-83). https://doi.org/10.1145/3371647.3371659.
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – Where are the educators? International Journal of Educational Technology in Higher Education, 16, 39. https://doi.org/10.1186/s41239-019-0171-0.
  • Zhang, C., & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23, 100224.

Yükseköğretimde Yapay Zekâ: Öğretim, Araştırma ve Topluma Hizmet Açısından Bakış

Year 2024, Volume: 20 Issue: 2, 29 - 45, 31.12.2024
https://doi.org/10.17244/eku.1457088

Abstract

Hızlı teknolojik gelişmelerin damgasını vurduğu bir çağda, yapay zekanın (YZ) entegrasyonu çeşitli sektörlerde giderek yaygınlaşarak yaşama, çalışma ve etkileşim biçiminde değişim gerektiren birçok durum yaratmıştır. YZ’nin derin bir etki yaratmaya hazırlandığı alanlardan biri de yükseköğretimdir. Bu araştırma, yükseköğretimin öğretim, araştırma ve topluma hizmet rolleri bağlamında YZ kullanımının çeşitli yönlerini incelemektedir. Yükseköğretimin öğretim işlevinde YZ’nin öne çıkan yönleri kişiselleştirilmiş öğrenme, uyarlanabilir değerlendirme, sanal asistanlar ve içerik oluşturma olarak kategorize edilebilir. YZ, yükseköğretimin araştırma işlevinde literatür taraması, hipotez oluşturma, deney optimizasyonu ve veri analizi olarak sınıflandırılabilir. Bunlara ek olarak YZ, yükseköğretimin topluma hizmet işlevinde ise toplumsal ihtiyaç değerlendirmesi, paydaş katılımı ve iş birliği, ve sürdürülebilirlik gibi alanlarda özellikle dikkat çekmektedir. YZ’nin yükseköğretimdeki sınırlılıklarına bakıldığında veri gizliliği, veri kalitesi ve bütünlüğü, algoritmik ön yargılar, pedagojik özerklik ve insan merkezli yaklaşım/empati öne çıkmaktadır. Bu nedenle, YZ yükseköğretimde yenilik yaratma konusunda büyük bir potansiyele sahip olsa da, sınırlılıklarının dikkatli bir şekilde değerlendirilmesi ve ilgili riskleri azaltmak için proaktif önlemler alınması gereklidir.

References

  • Abgaryan, H., Asatryan, S., & Matevosyan, A. (2023). Revolutionary changes in higher education with artificial intelligence. Main Issues Of Pedagogy And Psychology, 10(1), 76-86.
  • Altbach, P.G. (1996). The international academic profession: Portraits of fourteen countries. Jossey-Bass Publishers.
  • Antonio A. L., Astin, H. S., & Cress C. M. (2000). Community service in higher education: A look at the nation’s faculty. The Review of Higher Education, 23, 373–397.
  • Arslan, F., & Kahraman, H. T. (2019). Yapay zekâ tabanlı büyük veri yönetim aracı. Journal of Investigations on Engineering and Technology, 2(1), 8-21.
  • Atalay, M., & Çelik, E. (2017). Büyük veri analizinde yapay zekâ ve makine öğrenmesi uygulamaları - Artificial intelligence and machine learning applications in big data analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 9(22), 155-172.
  • Bates, T., Cobo, C., Mariño, O., & Wheeler, S. (2020). Can artificial intelligence transform higher education? International Journal of Educational Technology in Higher Education, 17(1), 1–12. https://doi.org/10.1186/s41239-020-00218-x.
  • Bearman, M., & Ajjawi, R. (2023). Learning to work with the black box: Pedagogy for a world with artificial intelligence. British Journal of Educational Technology, 54(5), 1160–1173. Doi:10.1111/bjet.13337.
  • Bu, Q. (2022). Ethical risks in integrating artificial intelligence into education and potential countermeasures. Science Insights, 41(1), 561. https://doi.org/10.15354/si.22.re067.
  • Castañeda, L., & Selwyn, N. (2018). More than tools? Making sense of he ongoing digitizations of higher education. International Journal of Educational Technology in Higher Education, 15(22). https://doi.org/10.1186/s41239-018-0109-y.
  • Chan, C. K. Y. (2023). A comprehensive AI policy education framework for university teaching and learning. International journal of educational technology in higher education, 20(1), 38.
  • Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2023). Artificial intelligence (AI) student assistants in the classroom: Designing chatbots to support student success. Information Systems Frontiers, 25(1), 161-182.
  • Dempere, J., Modugu, K., Hesham A, & Ramasamy, L. K. (2023). The impact of ChatGPT on higher education. Frontiers in Education, 8, 1206936. 10.3389/feduc.2023.1206936.
  • Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71.
  • Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994.
  • Eager, B., & Brunton, R. (2023). Prompting higher education towards AI-augmented teaching and learning practice. Journal of University Teaching & Learning Practice, 20(5), 02.
  • Extance, A. (2018). How AI technology can tame the scientific literature. Nature, 561(7722), 273-275.
  • Felzmann, H., Villaronga, E. F., Lutz, C., & Tamò-Larrieux, A. (2019). Transparency you can trust: Transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data & Society, 6(1), 2053951719860542.
  • Garcez, A. D. A., Bader, S., Bowman, H., Lamb, L. C., de Penning, L., Illuminoo, B. V., ... & Zaverucha, C. G. (2022). Neural-symbolic learning and reasoning: A survey and interpretation. Neuro-Symbolic Artificial Intelligence: The State of the Art, 342(1), 327.
  • George, A. H., Shahul, A., & George, A. S. (2023). Artificial intelligence in medicine: A New way to diagnose and treat disease. Partners Universal International Research Journal, 2(3), 246-259.
  • George, B., & Wooden, O. (2023). Managing the strategic transformation of higher education through artificial intelligence. Administrative Sciences, 13(9), 196.
  • Göçen, A., & Aydemir, F. (2021). Artificial intelligence in education and schools. Research on Education and Media, 12(1), 13–21. https://doi.org/10.2478/rem-2020-0003.
  • Johnson, L., Adams Becker, S., Estrada, V., & Freeman, A. (2015). NMC Horizon report: 2015 Higher education edition. The New Media Consortium.
  • Hashim, S., Omar, M. K., Ab Jalil, H., & Sharef, N. M. (2022). Trends on technologies and artificial intelligence in education for personalized learning: systematic literature. Journal of Academic Research in Progressive Education and Development, 12(1), 884-903.
  • Hollander, J. B., Potts, R., Hartt, M., & Situ, M. (2020). The role of artificial intelligence in community planning. International Journal of Community Well-Being, 3(4), 507-521.
  • Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign.
  • Kacena, M. A., Plotkin, L. I., & Fehrenbacher, J. C. (2024). The use of artificial intelligence in writing scientific review articles. Current Osteoporosis Reports, 1-7.
  • Kamalov, F., Calonge, D. S., & Gurrib, I. (2023). New era of Artificial intelligence in education: Towards a sustainable multifaceted revolution. Sustainability, 15(16), 1–27.
  • Kearney, M-L. (2009). Higher education, research and innovation: Charting the course of the changing dynamics of the knowledge society. V.L. Meek, U. Teichler, & M-L. Kearney (Ed.), Higher education, research and innovation: Changing dynamics içinde (ss. 7-23). INCHER and UNESCO.
  • Khurana, V. (2024). Accelerating pace of scientific discovery and innovation through big data enabled artificial intelligence and deep learning. Emerging Trends in Machine Intelligence and Big Data, 16(1), 38-53.
  • Korteling, J. H., van de Boer-Visschedijk, G. C., Blankendaal, R. A., Boonekamp, R. C., & Eikelboom, A. R. (2021). Human-versus artificial intelligence. Frontiers in Artificial Intelligence, 4, 622364.
  • Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M., Păun, D., & Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. Sustainability, 13(18), 10424.
  • Kumar, P. (2019). Artificial intelligence: Reshaping life and business. BPB Publications.
  • Liu, T., Gao, Z., & Guan, H. (2021). Educational information system optimization for artificial intelligence teaching strategies. Complexity, 1-13.
  • Marginson S. (2011). Higher education and public good. Higher Education Quarterly, 65, 411–433.
  • Markauskaite, L., Marrone, R., Poquet, O., Knight, S., Martinez-Maldonado, R., Howard, S., Tondeur, J., De Laat, M., Buckingham Shum, S., Gašević, D., & Siemens, G. (2022). Rethinking the entwinement between artificial intelligence and human learning: What capabilities do learners need for a world with AI? Computers and Education: Artificial Intelligence, 3, 100056. https://doi.org/10.1016/j.caeai.2022.100056.
  • Nassar, A., & Kamal, M. (2021). Ethical dilemmas in AI-powered decision-making: a deep dive into big data-driven ethical considerations. International Journal of Responsible Artificial Intelligence, 11(8), 1-11.
  • Nieto, Y., García-Díaz, V., Montenegro, C., & Crespo, R. G. (2019). Supporting academic decision making at higher educational institutions using machine learning-based algorithms. Soft Computing, 23(12), 4145. https://doi.org/10.1007/s00500-0183064-6.
  • Nishant, R., Kennedy, M., & Corbett, J. (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, 53, 102104.
  • Pedro, F. (2020). Applications of artificial intelligence to higher education: Possibilities, evidence, and challenges. IUL Research, 1(1), 61. https://doi.org/10.57568/iulres.v1i1.43.
  • Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education?. Journal of applied learning and teaching, 6(1), 342-363.
  • Rodway, P., & Schepman, A. (2023). The impact of adopting AI educational technologies on projected course satisfaction in university students. Computers and Education: Artificial Intelligence, 5, 100150.
  • Shneiderman, B. (2020). Human-centered artificial intelligence: Three fresh ideas. AIS Transactions on Human-Computer Interaction, 12(3), 109-124.
  • Srikanthan, G., & Dalrymple, J. (2002). Developing a holistic model for quality in higher education. Quality in Higher Education, 8(3), 215–224.
  • Taşçı, G., & Çelebi, M. (2020). Eğitimde yeni bir paradigma: Yükseköğretimde yapay zekâ. OPUS International Journal of Society Researches, 16(29), 2346. https://doi.org/10.26466/opus.747634.
  • Turan, T., Turan, G., & Küçüksille, E. (2022). Yapay zekâ etiği: Toplum üzerine etkisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 292-299.
  • Salmi, J. (2001). Tertiary education in the 21st century: Challenges and opportunities. Higher Education Management, 13(2), 105 128.
  • Scherer, M. U. (2015). Regulating artificial intelligence systems: Risks, challenges, competencies, and strategies. Harvard Journal of Law & Technology, 29, 353.
  • Singh, R. J. (2023). Transforming higher education: The power of artificial intelligence. International Journal of Multidisciplinary Research in Arts, Science and Technology, 1(3), 13-18.
  • Slimi, Z. (2023). The impact of artificial intelligence on higher education: An empirical study. European Journal of Educational Sciences, 10(1), 17-33.
  • Sun, W., Bocchini, P., & Davison, B. D. (2020). Applications of artificial intelligence for disaster management. Natural Hazards, 103(3), 2631-2689.
  • Tiwari, R. (2023). The integration of AI and machine learning in education and its potential to personalize and improve student learning experiences. International Journal of Scientific Research in Engineering and Management, 7(2), 1. https://doi.org/10.55041/ijsrem17645.
  • Uslu, B. (2023). Üniversitelerde yapay zekanın kullanım alanları: Potansiyel yararları ve olası zorluklar. Eğitimde Kuram ve Uygulama, 19(2), 227-239. https://doi.org/10.17244/eku.1355304.
  • Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., ... & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the sustainable development goals. Nature Communications, 11(1), 1-10.
  • Vishwakarma, L. P., Singh, R. K., Mishra, R., & Kumari, A. (2023). Application of artificial intelligence for resilient and sustainable healthcare system: Systematic literature review and future research directions. International Journal of Production Research, 1-23.
  • Waghid, Y. (2002). Knowledge production and higher education transformation in South Africa: Towards reflexivity in university teaching, research and community service. Higher Education, 43(4), 457–488. https://doi.org/10.1023/A:1015211718131.
  • Wang, Y. (2021). Artificial intelligence in educational leadership: A symbiotic role of human-artificial intelligence decision-making. Journal of Educational Administration, 59(3), 256-270.
  • Yang, S., & Evans, C. (2019). Opportunities and challenges in using AI chatbots in higher education. Proceedings of The 3rd International Conference on Education and E-Learning (ICEEL'19) (pp. 79-83). https://doi.org/10.1145/3371647.3371659.
  • Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – Where are the educators? International Journal of Educational Technology in Higher Education, 16, 39. https://doi.org/10.1186/s41239-019-0171-0.
  • Zhang, C., & Lu, Y. (2021). Study on artificial intelligence: The state of the art and future prospects. Journal of Industrial Information Integration, 23, 100224.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Higher Education Studies (Other)
Journal Section Makaleler
Authors

Şahabettin Akşab 0000-0001-9374-8007

Fatma Nevra Seggie 0000-0002-0657-6284

Publication Date December 31, 2024
Submission Date March 22, 2024
Acceptance Date November 8, 2024
Published in Issue Year 2024 Volume: 20 Issue: 2

Cite

APA Akşab, Ş., & Seggie, F. N. (2024). Yükseköğretimde Yapay Zekâ: Öğretim, Araştırma ve Topluma Hizmet Açısından Bakış. Eğitimde Kuram Ve Uygulama, 20(2), 29-45. https://doi.org/10.17244/eku.1457088