Fokal ve Fokal Olmayan EEG Sinyallerinin Sınıflandırılması
Year 2021,
Volume: 17 Issue: 1, 20 - 29, 30.06.2021
Bayram Karaman
,
Ayşegül Güven
Abstract
Epilepsi beyinde bulunan nöronlarda ani ve kontrolsüz boşalmalar sonucu oluşan nörofizyolojik bir hastalıktır. Dünya üzerinde birçok insan epilepsi hastalığından muzdariptir. Fokal (F) ve Fokal olmayan (NF) bölgelerin Elektroensefalogram (EEG) sinyalleri üzerinden otomatik olarak sınıflandırılması epilepsi hastalığının teşhisinde önemli bir yere sahiptir. Önerilen çalışmada F ve NF EEG sinyallerinin dalgacık katsayıları için Ayrık Dalgacık Dönüşümü kullanılmıştır. Bu katsayılardan Shannon Entropi, Log Enerji Entropi, Aritmetik Ortalama ve Medyan olarak dört özellik çıkarılmıştır. Bu özellikler WEKA (bilgi analizi için wikato ortamı) programında yer alan Lojistik Regresyon (LR) ve Destek Vektör Makineleri (SVM) algoritmaları ile sınıflandırılmıştır. Yapılan bu sınıflandırmalar sonucunda LR ve SVM sırasıyla %81 ve %83 sınıflandırma doğruluğu elde edilmiştir.
References
- Referans1
Fisher, RS., Van Emde Boas, W., Blume, W., et al., “Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE).”, Epilepsia, 46(4)., 470-2., 2005.
- Referans2
http://www.who.int/news-room/fact-sheets/detail/epilepsy. World Health Organization, World Health Organization, 10.10.2020.
- Referans3
Savic, I., Thorell, JO., & Roland, P., “[11C] flumazenil positron emission tomography visualizes frontal epileptogenic regions.”, Epilepsia, 36(12), 1225-1232, 1995.
- Referans4
Newton, M.R., Berkovic, S.F., Austin, M.C., Row, C.C., McKay, W. J., & Bladin, P.F., “SPECT in the localisation of extratemporal and temporal seizure foci”, Journal of Neurology, Neurosurgery & Psychiatry, 59(1), 26-30, 1995.
- Referans5
Seeck, M., Lazeyras, F. C., Michel, M., Blanke, O., Gericke, C. A., Ives, J., & Landis, T., “Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography”, Electroencephalography and clinical Neurophysiology, 106(6), 508-512, 1998.
- Referans6
Acharya, U.R., Hagiwara, Y., Despande, S.N., Suren, S., Koh, J.E.W., Oh, S.L., Arunkumar, N., Ciaccio, E.J., Lim, C.M., "Characterization of focal EEG signals: A review", Future Generation Computur Systems, 91, 290-299, 2019.
- Referans7
Sharma, R., Kumar, M., Pachori, R.B., Acharya, U.R., "Decision support system for focal EEG signals using tunable-Q wavelet transform", Journal of Computational Science, 20, 52-60, May 2017.
- Referans8
Andrzejak, R.G., Schindler, K., Rummel, C., "Nonrandomness nonlinear dependence and nonstationarity of electroencephalographic recordings from epilepsy patients", Physical Review E, 86, 046206, 2012.
- Referans9
Kaya, Y., Uyar, M., Tekin, R., Yıldırım, S., “1D-local binary pattern based feature extraction for classification of epileptic EEG signals”, Applied Mathematics and Computation, 243, 209-219, 2014.
- Referans10
Arunkumar, N., Ram Kumar, K., Venkataraman, V., "Entropy features for focal EEG and nonfocal EEG", J. Comput. Sci, 27, 440-444, 2018.
- Referans11
Bhattacharyya, A., Sharma, M., and Bilas, R., “A novel approach for automated detection of focal EEG signals using empirical wavelet transform,” Neural Comput. Appl., 29(8), 47–57, 2018.
- Referans12
Singh, P., Pachori, R.B., "Classification of focal and nonfocal EEG signals using features derived from Fourier-based rhythms", Journal of Mechanics in Medicine and Biology, 17(07), 2017.
- Referans13
Prasanna, J., Sairamya, N.J., George, S.T., Vinutha, C.R., and Subathra, M.S.P., “Classification of Non-focal and Focal EEG signals using Local Binary Pattern”, International Conference on Computer Communication and Informatics (ICCCI), 1-4, IEEE, 2019.
- Referans14
Das, A.B., Bhuiyan, M.I.H., “Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain”, Biomedical Signal Processing Control, 11-21, 2016.
- Referans15
Daubechies, I., “The wavelet transform, timefrequency localization and signal analysis”, IEEE Transactions on Information Theory, 36(5), 961- 1005, 1990.
- Referans16
Serap, A., Hamdi, M.S., Sadık, K., “Log energy entropy-based EEG classification with multilayer neural network in seizure”, Annals of Biomedical Engineering, 37(12); 2009.
- Referans17
Behshad, H., Moradi, M.H., and Rostami, R., “Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal” Computer methods and programs in biomedicine, 109.3, 339-345., 2013.
- Referans18
Sezer, O.G., Erçil, A., Keskinöz, M., “Destek Vektör Makinesi Kullanarak Bağımsız Bileşen Tabanlı 3B Nesne Tanıma”, 2005.
- Referans19
Siyah, B. “Destek Vektör Makineleri ve Çok Katmanlı Algılayıcılar ile Göğüs Kanseri Teşhisi”.
- Referans20
Vapnik, V., “Statistical Learning Theory”, Wiley, New York, 1998.
- Referans21
Chen, D., Wan, S., and Bao, F.S., "Epileptic Focus Localization Using Discrete Wavelet Transform Based on Interictal Intracranial EEG", IEEE Transactions on Neural Systems and Rehabilitation Engineering, 4320, 1-12, 2016.
- Referans22
Itakura, T., Tanaka, T., A., Dataset, "Epileptic Focus Localization Based on Bivariate Empirical Mode Decomposition and Entropy", AsiaPacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 1426-1429, December 2017.
- Referans23
Fasil, O.K., Rajesh, R., & Thasleema, T.M., “Influence of differential features in focal and non-focal EEG signal classification”, IEEE Region 10 Humanitarian Technology Conference, 646-649, 2017.
Year 2021,
Volume: 17 Issue: 1, 20 - 29, 30.06.2021
Bayram Karaman
,
Ayşegül Güven
References
- Referans1
Fisher, RS., Van Emde Boas, W., Blume, W., et al., “Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE).”, Epilepsia, 46(4)., 470-2., 2005.
- Referans2
http://www.who.int/news-room/fact-sheets/detail/epilepsy. World Health Organization, World Health Organization, 10.10.2020.
- Referans3
Savic, I., Thorell, JO., & Roland, P., “[11C] flumazenil positron emission tomography visualizes frontal epileptogenic regions.”, Epilepsia, 36(12), 1225-1232, 1995.
- Referans4
Newton, M.R., Berkovic, S.F., Austin, M.C., Row, C.C., McKay, W. J., & Bladin, P.F., “SPECT in the localisation of extratemporal and temporal seizure foci”, Journal of Neurology, Neurosurgery & Psychiatry, 59(1), 26-30, 1995.
- Referans5
Seeck, M., Lazeyras, F. C., Michel, M., Blanke, O., Gericke, C. A., Ives, J., & Landis, T., “Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography”, Electroencephalography and clinical Neurophysiology, 106(6), 508-512, 1998.
- Referans6
Acharya, U.R., Hagiwara, Y., Despande, S.N., Suren, S., Koh, J.E.W., Oh, S.L., Arunkumar, N., Ciaccio, E.J., Lim, C.M., "Characterization of focal EEG signals: A review", Future Generation Computur Systems, 91, 290-299, 2019.
- Referans7
Sharma, R., Kumar, M., Pachori, R.B., Acharya, U.R., "Decision support system for focal EEG signals using tunable-Q wavelet transform", Journal of Computational Science, 20, 52-60, May 2017.
- Referans8
Andrzejak, R.G., Schindler, K., Rummel, C., "Nonrandomness nonlinear dependence and nonstationarity of electroencephalographic recordings from epilepsy patients", Physical Review E, 86, 046206, 2012.
- Referans9
Kaya, Y., Uyar, M., Tekin, R., Yıldırım, S., “1D-local binary pattern based feature extraction for classification of epileptic EEG signals”, Applied Mathematics and Computation, 243, 209-219, 2014.
- Referans10
Arunkumar, N., Ram Kumar, K., Venkataraman, V., "Entropy features for focal EEG and nonfocal EEG", J. Comput. Sci, 27, 440-444, 2018.
- Referans11
Bhattacharyya, A., Sharma, M., and Bilas, R., “A novel approach for automated detection of focal EEG signals using empirical wavelet transform,” Neural Comput. Appl., 29(8), 47–57, 2018.
- Referans12
Singh, P., Pachori, R.B., "Classification of focal and nonfocal EEG signals using features derived from Fourier-based rhythms", Journal of Mechanics in Medicine and Biology, 17(07), 2017.
- Referans13
Prasanna, J., Sairamya, N.J., George, S.T., Vinutha, C.R., and Subathra, M.S.P., “Classification of Non-focal and Focal EEG signals using Local Binary Pattern”, International Conference on Computer Communication and Informatics (ICCCI), 1-4, IEEE, 2019.
- Referans14
Das, A.B., Bhuiyan, M.I.H., “Discrimination and classification of focal and non-focal EEG signals using entropy-based features in the EMD-DWT domain”, Biomedical Signal Processing Control, 11-21, 2016.
- Referans15
Daubechies, I., “The wavelet transform, timefrequency localization and signal analysis”, IEEE Transactions on Information Theory, 36(5), 961- 1005, 1990.
- Referans16
Serap, A., Hamdi, M.S., Sadık, K., “Log energy entropy-based EEG classification with multilayer neural network in seizure”, Annals of Biomedical Engineering, 37(12); 2009.
- Referans17
Behshad, H., Moradi, M.H., and Rostami, R., “Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal” Computer methods and programs in biomedicine, 109.3, 339-345., 2013.
- Referans18
Sezer, O.G., Erçil, A., Keskinöz, M., “Destek Vektör Makinesi Kullanarak Bağımsız Bileşen Tabanlı 3B Nesne Tanıma”, 2005.
- Referans19
Siyah, B. “Destek Vektör Makineleri ve Çok Katmanlı Algılayıcılar ile Göğüs Kanseri Teşhisi”.
- Referans20
Vapnik, V., “Statistical Learning Theory”, Wiley, New York, 1998.
- Referans21
Chen, D., Wan, S., and Bao, F.S., "Epileptic Focus Localization Using Discrete Wavelet Transform Based on Interictal Intracranial EEG", IEEE Transactions on Neural Systems and Rehabilitation Engineering, 4320, 1-12, 2016.
- Referans22
Itakura, T., Tanaka, T., A., Dataset, "Epileptic Focus Localization Based on Bivariate Empirical Mode Decomposition and Entropy", AsiaPacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 1426-1429, December 2017.
- Referans23
Fasil, O.K., Rajesh, R., & Thasleema, T.M., “Influence of differential features in focal and non-focal EEG signal classification”, IEEE Region 10 Humanitarian Technology Conference, 646-649, 2017.