Muharip İHA’ların İnsanlı Savaş Uçaklarından Yönetilmesi İçin Gerekli Otonomi Seviyelerinin Belirlenmesi Üzerine Bir Araştırma
Yıl 2024,
Cilt: 14 Sayı: 1, 61 - 72, 30.01.2024
Güray Kasapoğlu
,
Özer Demir
,
Halil Sert
,
Tolga Türkmen
,
Haluk Gözde
,
Serkan Kurt
Öz
Savunma sanayiinde öncü ülkeler tarafından geliştirilen ve otonom şekilde tek ya da sürü halinde görev yapabilen İHA’ların, havadaki başka bir muharip uçak tarafından yönlendirilmesi konseptinin uygulamaya geçmesi askeri havacılık alanında yeni bir çağın başlangıcı olmuştur. Silahlı bir güç olarak otonom İHA’ların daha fazla yetkiye sahip olması ve pilotun artan otonomi seviyelerinde döngünün dışına doğru çekilmesi nihai beklentidir. Ancak mevcut otonomi yaklaşımlarının henüz söz konusu konseptte kullanılacak seviyede olmadığı değerlendirilmektedir. Bu çalışmada, insanlı-insansız iş birliği konsepti (Manned UnManned – MUM-T) içinde tek başına insan veya yapay zekâ tarafından yapılması zor görevleri iş birliği içerisinde gerçekleştirirken, farklı görevler için ihtiyaç duyulan fonksiyonların hangi yetki seviyelerinde kimler tarafından yapılacağının tespit edilmesi ve bu yetkilendirmelerin standart hale getirilmesi için manuel kullanımdan tam otonomiye kadar gerekli otonomi seviyelerinin belirlenmesi amaçlanmıştır. Bu maksatla, operatif seviyede yapılacağı öngörülen 11 adet fonksiyon uzman görüşüyle incelenerek her biri için altışar seviyeli otonomi çizelgeleri özgün olarak oluşturulmuş ve literatüre sunulmuştur.
Kaynakça
- [1] Ollero, A. (2018). “Introduction: Advances in Industrial Control” (Matgo Orsag vd.), Aerial Manipulation, ss.1-18, Springer Cham, New York City.
- [2] Boeing (2021). U.S. Navy, Boeing Conduct First MQ-25 Refueling Mission with F-35C. https://www.boeing.com /defense/mq25/
- [3] Wikipedia. (2021). Loyal wingman. https://en.wikipedia. org/wiki/Loyal_wingman
- [4] Kalınbacak, İ. (2023). “Sürü Otonom İHA Sistemlerinin Muharebe Sahasında Uygulama Taktikleri ve Geliştirilen Yeni Teknolojiler”, Savunma Bilimleri Dergisi, 43(1):191- 209 (2023)
- [5] Wu, X.; Wang, C., Niu, Y., Hu, X. & Fan, C. (2018). Adaptive Human-in-the-loop Multi-target Recognition Improved by Learning, International Journal of Advanced Robotic Systems, 2018(May-June): 1-13.
- [6] Ruan, D.; Zhang, W. & Qian, D. (2021). Feature-based autonomous target recognition and grasping of industrial robots. Personal and Ubiquitous Computing, 2023 (27): 1355-1367.
- [7] Zhang, M.; Zhao, D., Sheng, C., Liu, Z. & Cai, W. (2023). Long-Strip Target Detection and Tracking with Autonomous Surface Vehicle. J. Mar. Sci. Eng. Switzerland.
- [8] Duan, H.; Li, P. (2019). Bio-inspired Computation in Unmanned Aerial Vehicles. Springer, London.
- [9] Exyn Technologies. (2021). Defining Levels of Aerial Autonomy Version 1.0. https://www.exyn.com/levels-of-autonomy-white-paper
- [10] Sheridan, T.B. (1992). Telerobotics, Automation, and Human Supervisory Control, The MIT Press.
- [11] Clough, B.T. (2002). Metrics, Schmetrics! How The Heck Do You Determine A UAV's Autonomy Anyway?Performance Metrics for Intelligent Systems Workshop, Gaithersburg, MD.
- [12] Proud, R.W., Hart, J.J. & Mrozinski, R.B. (2003). Methods for Determining the Level of Autonomy to Design into a Human Spaceflight Vehicle: A Function Specific Approach, Performance Metrics for Intelligent Systems.
- [13] Huang, H.M. (2004). Autonomy Levels for Unmanned Systems (ALFUS) Framework Volume I: Terminology, NIST Special Publication 1011.
- [14] NATO, (2004). Pre-Feasibility Study on UAV Autonomous Operations. NATO Industrial Advisory Group – Study Group 75.
- [15] NATO STO, (2016). Unmanned Systems (UMS) Platform Technologies and Performances for Autonomous Operations, NATO STO Technical Report TR-AVT-175.
- [16] NATO, (2012). Standardization Agreement (STANAG) 4586: Standard Interefaces of UAV control systems (UCS) for NATO UAV interoperability.
- [17] Williams, A.P. & Scharre, P.D. (2015). Autonomous Systems: Issues for Defence Policymakers, The Hague, Netherlands: NATO Communication and Information Agency.
- [18] SAE International. (2021). SAE Levels of Driving Automation Refined for Clarity and International Audience. https://www.sae.org/blog/sae-j3016-update
- [19] Ekşi, Ö. (2023). “TUSAŞ Prepares Turkish Loyal Wingman: OKU”, TurDef.
A Research On Determining The Autonomy Levels Necessary For Managing Combatant UAVs From Manned Combat Aircraft
Yıl 2024,
Cilt: 14 Sayı: 1, 61 - 72, 30.01.2024
Güray Kasapoğlu
,
Özer Demir
,
Halil Sert
,
Tolga Türkmen
,
Haluk Gözde
,
Serkan Kurt
Öz
The implementation of the concept of UAVs, which were developed by leading countries in the defense industry, can operate autonomously alone or in groups, being guided by another combat aircraft in the air, has marked the beginning of a new era in the field of military aviation. As an armed force, the ultimate expectation is that autonomous UAVs will have more authority and the pilot will be pulled out of the loop with increasing levels of autonomy. However, it is considered that current autonomy approaches are not yet at the level to be used in this concept. In this study, while performing tasks that are difficult to be done by humans or artificial intelligence alone within the concept of Manned-UnManned Teaming, it is aimed to determine who will perform the functions needed for different tasks at what authority levels and to standardize these authorizations. The aim is to determine the required autonomy levels, from manual use to full autonomy. For this purpose, 11 functions that were predicted to be performed at the operative level were examined with expert opinion, and six-level autonomy charts for each were originally created and presented to the literature.
Kaynakça
- [1] Ollero, A. (2018). “Introduction: Advances in Industrial Control” (Matgo Orsag vd.), Aerial Manipulation, ss.1-18, Springer Cham, New York City.
- [2] Boeing (2021). U.S. Navy, Boeing Conduct First MQ-25 Refueling Mission with F-35C. https://www.boeing.com /defense/mq25/
- [3] Wikipedia. (2021). Loyal wingman. https://en.wikipedia. org/wiki/Loyal_wingman
- [4] Kalınbacak, İ. (2023). “Sürü Otonom İHA Sistemlerinin Muharebe Sahasında Uygulama Taktikleri ve Geliştirilen Yeni Teknolojiler”, Savunma Bilimleri Dergisi, 43(1):191- 209 (2023)
- [5] Wu, X.; Wang, C., Niu, Y., Hu, X. & Fan, C. (2018). Adaptive Human-in-the-loop Multi-target Recognition Improved by Learning, International Journal of Advanced Robotic Systems, 2018(May-June): 1-13.
- [6] Ruan, D.; Zhang, W. & Qian, D. (2021). Feature-based autonomous target recognition and grasping of industrial robots. Personal and Ubiquitous Computing, 2023 (27): 1355-1367.
- [7] Zhang, M.; Zhao, D., Sheng, C., Liu, Z. & Cai, W. (2023). Long-Strip Target Detection and Tracking with Autonomous Surface Vehicle. J. Mar. Sci. Eng. Switzerland.
- [8] Duan, H.; Li, P. (2019). Bio-inspired Computation in Unmanned Aerial Vehicles. Springer, London.
- [9] Exyn Technologies. (2021). Defining Levels of Aerial Autonomy Version 1.0. https://www.exyn.com/levels-of-autonomy-white-paper
- [10] Sheridan, T.B. (1992). Telerobotics, Automation, and Human Supervisory Control, The MIT Press.
- [11] Clough, B.T. (2002). Metrics, Schmetrics! How The Heck Do You Determine A UAV's Autonomy Anyway?Performance Metrics for Intelligent Systems Workshop, Gaithersburg, MD.
- [12] Proud, R.W., Hart, J.J. & Mrozinski, R.B. (2003). Methods for Determining the Level of Autonomy to Design into a Human Spaceflight Vehicle: A Function Specific Approach, Performance Metrics for Intelligent Systems.
- [13] Huang, H.M. (2004). Autonomy Levels for Unmanned Systems (ALFUS) Framework Volume I: Terminology, NIST Special Publication 1011.
- [14] NATO, (2004). Pre-Feasibility Study on UAV Autonomous Operations. NATO Industrial Advisory Group – Study Group 75.
- [15] NATO STO, (2016). Unmanned Systems (UMS) Platform Technologies and Performances for Autonomous Operations, NATO STO Technical Report TR-AVT-175.
- [16] NATO, (2012). Standardization Agreement (STANAG) 4586: Standard Interefaces of UAV control systems (UCS) for NATO UAV interoperability.
- [17] Williams, A.P. & Scharre, P.D. (2015). Autonomous Systems: Issues for Defence Policymakers, The Hague, Netherlands: NATO Communication and Information Agency.
- [18] SAE International. (2021). SAE Levels of Driving Automation Refined for Clarity and International Audience. https://www.sae.org/blog/sae-j3016-update
- [19] Ekşi, Ö. (2023). “TUSAŞ Prepares Turkish Loyal Wingman: OKU”, TurDef.