Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 4, 171 - 178, 20.12.2020
https://doi.org/10.26701/ems.730201

Abstract

Supporting Institution

Tübitak Uzay Araştıma Enstitüsü

References

  • Gilmore, D.G.( 2002). Spacecraft Thermal Control Handbook. The Aerospace Corporation, El Segundo, California.
  • Fishwick, N.A,Smith K.A,Perez.J.A. (2015). Lessons Learned from Thermal Vacuum Testing of LISA Pathfinder over three system level Thermal Tests.International Conference on Environmental Systems. ICES 2015-246.
  • Coker, R.F. (2013). Thermal Modeling in Support of the Edison Demonstration of Smallsat Networks Project.43rd International Conference on Environmental Systems (ICES). doi:10.2514/6.2013-3368.
  • Moffitt, B.A.,Batty,J.C. (2002). Predictive Thermal Analysis of the Combat Sentinel Satellite.16th AIAA/USU Conference on Small Satellites, Logan, Utah.
  • Bulut, .Kahriman, A, Sozbir,N. (2010). Design and Analysis for Thermal Control System of Nanosatellite. ASME 2010 International Mechanical Engineering Congress & Exposition.
  • Mishra, H.V. (2018). Thermal Control Subsystem for CubeSat in Low Earth Orbit.IRJET 2018 International Research Journal of Engineering and Technology, 946-949.
  • Tsai, J.R. (2004). Overview of Satellite Thermal Analytical Model. Journal of Spacecraft and Rockets, 41(1):120-125. doi:10.2514/1.9273.
  • Garzon, M.M. (2012). Development and Analysis of The Thermal Design For the OSIRIC-3U Cubesat, A Master Thesis in Aerospace Engineering,Penn State University.
  • Hurman,J.L. (2012).Optimization of steady-state thermal design of space radiators. Journal of Spacecraft and Rockets 6:10. doi: 10.2514/3.29773
  • Aslanturk, C. (2006). Optimization of a central-heating radiator. American Institute of Aeronautics and Astronautics. 6:10 doi: 10.2514/3.29773
  • Doner, N. (2014). M1 Model for Radiative Heat Transfer in Absorbing, Emitting, and Scattering Medium, International Journal of Thermal Sciences, Volume 79,34-39.
  • Aksu,A.Sundu.H,Mermer,E. (2019) Nonlinear system identification for the thermal management of communication satellites EUCASS2019 doi:10.13009/ EUCASS2019-910
  • Sharma, A.K. (2013). Surface Engineering For Thermal Control of Spacecraft. Journal Surface Engineering, 21(3): 249-253. doi:10.1179/174329405X50118
  • Thermica User’s Manual, Version 4.8.0.P1.
  • Lauga, R.P. (2017). Using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis, 47th International Conference on Environmental Systems(ICES)-2017-142
  • Vujičić, M. R., Lavery, N. P., & Brown, S. G. R. (2006). Numerical sensitivity and view factor calculation using the Monte Carlo method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(5), 697-702.
  • Iucci, N., Dorman, L. I., Levitin, A. E., Belov, A. V., Eroshenko, E. A., Ptitsyna, N. G., & Tyasto, M. I. (2006). Spacecraft operational anomalies and space weather impact hazards. Advances in Space Research, 37(1), 184-190.

Detailed Thermal Design and Control of an Observation Satellite in Low Earth Orbit

Year 2020, Volume: 4 Issue: 4, 171 - 178, 20.12.2020
https://doi.org/10.26701/ems.730201

Abstract

The thermal environment in space has challenging conditions in which include vacuum, low pressure, atomic oxygen, extremely hot and cold. Satellites consist of electronic equipments and these equipments should be maintained at a certain temperature range during the operation period. Therefore, thermal design and control of observation satellites at Low Earth Orbit in space are considerably important. In our study, we studied thermal design and analysis of a Low Earth Orbit (LEO) observation satellites. A satellite was designed and modeled with Systema-Thermica v.4.8.P1 using Monte-Carlo Ray Tracing Method. The analyses were performed for two extreme scenarios: i) the worst hot, and ii) the worst cold situations. The areas, temperatures, and locations of the radiators on the satellite panels were analyzed by the considered extreme scenarios. The powers and operating conditions of the heaters were evaluated according to the worst cold scenario. It was seen that the temperatures of the electronic equipments on the satellite are to be in the optimum temperature range during the observation process.

References

  • Gilmore, D.G.( 2002). Spacecraft Thermal Control Handbook. The Aerospace Corporation, El Segundo, California.
  • Fishwick, N.A,Smith K.A,Perez.J.A. (2015). Lessons Learned from Thermal Vacuum Testing of LISA Pathfinder over three system level Thermal Tests.International Conference on Environmental Systems. ICES 2015-246.
  • Coker, R.F. (2013). Thermal Modeling in Support of the Edison Demonstration of Smallsat Networks Project.43rd International Conference on Environmental Systems (ICES). doi:10.2514/6.2013-3368.
  • Moffitt, B.A.,Batty,J.C. (2002). Predictive Thermal Analysis of the Combat Sentinel Satellite.16th AIAA/USU Conference on Small Satellites, Logan, Utah.
  • Bulut, .Kahriman, A, Sozbir,N. (2010). Design and Analysis for Thermal Control System of Nanosatellite. ASME 2010 International Mechanical Engineering Congress & Exposition.
  • Mishra, H.V. (2018). Thermal Control Subsystem for CubeSat in Low Earth Orbit.IRJET 2018 International Research Journal of Engineering and Technology, 946-949.
  • Tsai, J.R. (2004). Overview of Satellite Thermal Analytical Model. Journal of Spacecraft and Rockets, 41(1):120-125. doi:10.2514/1.9273.
  • Garzon, M.M. (2012). Development and Analysis of The Thermal Design For the OSIRIC-3U Cubesat, A Master Thesis in Aerospace Engineering,Penn State University.
  • Hurman,J.L. (2012).Optimization of steady-state thermal design of space radiators. Journal of Spacecraft and Rockets 6:10. doi: 10.2514/3.29773
  • Aslanturk, C. (2006). Optimization of a central-heating radiator. American Institute of Aeronautics and Astronautics. 6:10 doi: 10.2514/3.29773
  • Doner, N. (2014). M1 Model for Radiative Heat Transfer in Absorbing, Emitting, and Scattering Medium, International Journal of Thermal Sciences, Volume 79,34-39.
  • Aksu,A.Sundu.H,Mermer,E. (2019) Nonlinear system identification for the thermal management of communication satellites EUCASS2019 doi:10.13009/ EUCASS2019-910
  • Sharma, A.K. (2013). Surface Engineering For Thermal Control of Spacecraft. Journal Surface Engineering, 21(3): 249-253. doi:10.1179/174329405X50118
  • Thermica User’s Manual, Version 4.8.0.P1.
  • Lauga, R.P. (2017). Using real Earth Albedo and Earth IR Flux for Spacecraft Thermal Analysis, 47th International Conference on Environmental Systems(ICES)-2017-142
  • Vujičić, M. R., Lavery, N. P., & Brown, S. G. R. (2006). Numerical sensitivity and view factor calculation using the Monte Carlo method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220(5), 697-702.
  • Iucci, N., Dorman, L. I., Levitin, A. E., Belov, A. V., Eroshenko, E. A., Ptitsyna, N. G., & Tyasto, M. I. (2006). Spacecraft operational anomalies and space weather impact hazards. Advances in Space Research, 37(1), 184-190.
There are 17 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Hilmi Sundu 0000-0002-4515-5079

Nimeti Döner 0000-0001-8963-2829

Publication Date December 20, 2020
Acceptance Date July 18, 2020
Published in Issue Year 2020 Volume: 4 Issue: 4

Cite

APA Sundu, H., & Döner, N. (2020). Detailed Thermal Design and Control of an Observation Satellite in Low Earth Orbit. European Mechanical Science, 4(4), 171-178. https://doi.org/10.26701/ems.730201

Dergi TR Dizin'de Taranmaktadır.

Flag Counter