Research Article
BibTex RIS Cite

Computational hemodynamic simulation of non-Newtonian fluid-structure interaction in a curved stenotic artery

Year 2024, Volume: 8 Issue: 4, 226 - 256
https://doi.org/10.26701/ems.1492905

Abstract

This paper focuses on deploying Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction (FSI) to investigate key characteristics associated with Cardiovascular Diseases (CVDs), a leading cause of global mortality. CVDs encompass various heart and blood vessel disorders, including coronary artery disease, stroke and atherosclerosis, which significantly impact arteries. Risk factors such as high blood pressure and obesity contribute to atherosclerosis, which is characterized by narrowed arteries due to fatty deposits, impeding blood flow and increasing heart attack and stroke risks. To simulate blood flow behaviour and its effects on artery stenosis formation, ANSYS-based CFD and monolithic (one-way) Fluid-Structure Interaction (FSI) analyses are deployed in this work. Extensive visualization of blood flow patterns relevant to patient-specific conditions is included using the non-Newtonian (Carreau shear-thinning) bio-rheological model. These simulations start with creating a three-dimensional patient artery model, followed by applying CFD/FSI methodologies to solve the equations iteratively with realistic boundary conditions. Velocity, pressure, wall shear stress (WSS), Von mises stress and strain characteristics are all computed for multiple curvature cases and different stenotic depths. Factors such as blood viscosity, density and its non-Newtonian behaviour due to red blood cells are considered. FSI analysis extends CFD by including the interaction between blood flow and deformable (elastic) arterial walls, accounting for the arterial mechanical properties and the flow-induced pressure changes. Here we do not consider the two-way case where deformation in turn affects the flow, only the one-way (monolithic) case where the blood flow distorts the arterial wall. This approach allows for deeper insight into the interaction between rheological blood flow and elastic arterial walls which aids in highlighting high stress zones, recirculation and hemodynamic impedance of potential use in identifying rupture or plaque formation, contributing significantly to the management and prevention of CVDs.

References

  • Papageorgiou, N. (2016). Cardiovascular diseases: Genetic susceptibility, environmental factors and their interaction. Academic Press.
  • Goldsmith, H. L., & Skalak, R. (1975). Hemodynamics. Annual Review of Fluid Mechanics, 7(1), 213-247.
  • Ku, D. N. (1997). Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1), 399-434.
  • Taylor, C. A., & Figueroa, C. A. (2009). Patient-specific modelling of cardiovascular mechanics. Annual Review of Biomedical Engineering, 11, 109-134.
  • Wong, K. K., Wu, J., Liu, G., Huang, W., & Ghista, D. N. (2020). Coronary arteries hemodynamics: Effect of arterial geometry on hemodynamic parameters causing atherosclerosis. Medical & Biological Engineering & Computing, 58, 1831-1843.
  • Berger, S. A., & Jou, L.-D. (2000). Flows in stenotic vessels. Annual Review of Fluid Mechanics, 32, 347-382.
  • Dash, R. K., Jayaraman, G., & Mehta, K. N. (1999). Flow in a catheterized curved artery with stenosis. Journal of Biomechanics, 32(1), 49-61.
  • Kim, J., Jin, D., Choi, H., Kweon, J., Yang, D. H., & Kim, Y. H. (2020). A zero-dimensional predictive model for the pressure drop in the stenotic coronary artery based on its geometric characteristics. Journal of Biomechanics, 113, 110076.
  • Santamarina, A., Weydahl, E., Siegel, J. M., & Moore, J. E. (1998). Computational analysis of flow in a curved tube model of the coronary arteries: Effects of time-varying curvature. Annals of Biomedical Engineering, 26, 944-954.
  • Hoque, M. M., Alam, M. M., & Ferdows, M. (2013). Numerical simulation of Dean number and curvature effects on magneto-biofluid flow through a curved conduit. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 227(11), 1155-1170.
  • Chiang, C. H., Kao, R. H., Hung, T. K., & Bég, O. A. (2023). Computation of three-dimensional blood flow development in a 180° curved tube geometry. Journal of Mechanics in Medicine and Biology.
  • Ali, N., Javid, K., Sajid, M., & Bég, O. A. (2016). Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel. Computer Methods In Biomechanics and Biomedical Engineering, 19(6), 614-627.
  • Tripathi, D., Akbar, N. S., Khan, Z. H., & Bég, O. A. (2016). Peristaltic transport of bi-viscosity fluids through a curved tube: A mathematical model for intestinal flow. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(9), 817-828.
  • Narla, V. K., Tripathi, D., & Bég, O. A. (2020). Electro-osmotic nanofluid flow in a curved microchannel. Chinese Journal of Physics, 67, 544-558.
  • Khan, A. A., Akram, K., Zaman, A., & Bég, T. A. (2022). Electro-osmotic peristaltic flow and heat transfer in an ionic viscoelastic fluid through a curved micro-channel with viscous dissipation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 236(8), 1080-1092.
  • Bég, O. A., Hoque, M. M., Wahiduzzaman, M., Alam, M. M., & Ferdows, M. (2014). Spectral numerical simulation of magneto-physiological laminar dean flow. Journal of Mechanics in Medicine and Biology, 14(04), 1450047.
  • Zaman, A., Ali, N., & Bég, O. A. (2016). Unsteady magnetohydrodynamic blood flow in a porous-saturated overlapping stenotic artery—Numerical modelling. Journal of Mechanics in Medicine and Biology, 16(04), 1650049.
  • Wajihah, S. A., & Sankar, D. S. (2023). A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries. Archive of Applied Mechanics, 93(5), 1771-1796.
  • Sriyab, S. (2020). The effect of stenotic geometry and non-Newtonian property of blood flow through arterial stenosis. Cardiovascular & Haematological Disorders-Drug Targets, 20(1), 16-30.
  • Lakzian, E., & Akbarzadeh, P. (2019). Numerical investigation of unsteady pulsatile Newtonian/non-Newtonian blood flow through curved stenosed arteries. Bio-Medical Materials and Engineering, 30(5-6), 525-540.
  • Zaman, A., Ali, N., Anwar Bég, O., & Bég, T. A. (2016). Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm. Medical & Biological Engineering & Computing, 54, 1423-1436.
  • Vasu, B., Dubey, A., Bég, O. A., & Gorla, R. S. (2020). Micropolar pulsatile blood flow conveying nanoparticles in a stenotic tapered artery: Non-Newtonian pharmacodynamic simulation. Computers in Biology and Medicine, 126, 104025.
  • Tripathi, J., Vasu, B., Bég, O. A., & Gorla, R. S. R. (2021). Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery: Biomedical drug delivery simulation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(10), 1175-1196.
  • Dubey, A., Vasu, B., Bég, O. A., & Gorla, R. S. R. (2020). Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm. Computer Methods in Biomechanics and Biomedical Engineering, 23(8), 345-371.
  • Tripathi, J., Vasu, B., & Bég, O. A. (2021). Computational simulations of hybrid mediated nano-hemodynamics (Ag-Au/Blood) through an irregular symmetric stenosis. Computers in Biology and Medicine, 130, 104213.
  • Roy, A. K., & Bég, O. A. (2021). Asymptotic study of unsteady mass transfer through a rigid artery with multiple irregular stenoses. Applied Mathematics and Computation, 410, 126485.
  • Zaman, A., Ali, N., Bég, O. A., & Sajid, M. (2016). Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery. International Journal of Heat and Mass Transfer, 95, 1084-1095.
  • Zaman, A., Ali, N., Bég, O. A., & Sajid, M. (2016). Unsteady two-layered blood flow through an a-shaped stenosed artery using the generalized Oldroyd-B fluid model. The ANZIAM Journal, 58(1), 96-118.
  • Akbar, N. S., Tripathi, D., & Bég, O. A. (2017). Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery. The European Physical Journal Plus, 132, 1-11.
  • Ali, N., Zaman, A., Sajid, M., Bég, O. A., Shamshuddin, M. D., & Kadir, A. (2018). Numerical simulation of time-dependent non-Newtonian nano-pharmacodynamic transport phenomena in a tapered overlapping stenosed artery. Nanoscience and Technology: An International Journal, 9(3).
  • Bukač, M., Čanić, S., Tambača, J., & Wang, Y. (2019). Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study. Computer Methods in Applied Mechanics and Engineering, 350, 679-700.
  • Bukač, M., Čanić, S., Glowinski, R., Tambača, J., & Quaini, A. (2013). Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. Journal of Computational Physics, 235, 515-541.
  • Mendez, V., Di Giuseppe, M., & Pasta, S. (2018). Comparison of hemodynamic and structural indices of ascending thoracic aortic aneurysm as predicted by 2-way FSI, CFD rigid wall simulation and patient-specific displacement-based FEA. Computers in Biology and Medicine, 100, 221-229.
  • Carvalho, V., Lopes, D., Silva, J., Puga, H., Lima, R. A., Teixeira, J. C., & Teixeira, S. (2022). Comparison of CFD and FSI simulations of blood flow in stenotic coronary arteries. In S. Bhattacharyya (Ed.), Applications of Computational Fluid Dynamics Simulation and Modeling. Intech Open Publishers.
  • Luraghi, G., Wu, W., De Gaetano, F., Matas, J. F. R., Moggridge, G. D., Serrani, M., & Migliavacca, F. (2017). Evaluation of an aortic valve prosthesis: Fluid-structure interaction or structural simulation? Journal of Biomechanics, 58, 45-51.
  • Failer, L., Minakowski, P., & Richter, T. (2021). On the impact of fluid structure interaction in blood flow simulations: Stenotic coronary artery benchmark. Vietnam Journal of Mathematics, 49, 169-187.
  • Balzani, D., Heinlein, A., Klawonn, A., Rheinbach, O., & Schröder, J. (2023). Comparison of arterial wall models in fluid–structure interaction simulations. Computational Mechanics, 2, 1-7.
  • Deparis, S., Forti, D., Heinlein, A., Klawonn, A., Quarteroni, A., & Rheinbach, O. (2015). A comparison of preconditioners for the Steklov–Poincaré formulation of the fluid‐structure coupling in hemodynamics. PAMM, 15(1), 93-94.
  • Gasser, T. C., Miller, C., Polzer, S., & Roy, J. (2023). A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments. International Journal of Numerical Methods in Biomedical Engineering, 39(4), e3587.
  • Turek, S., Hron, J., Madlik, M., Razzaq, M., Wobker, H., & Acker, J. F. (2010). Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. In H.-J. Bungartz et al. (Eds.), Fluid Structure Interaction II, Lecture Notes in Computational Science and Engineering (Vol. 73). Springer Berlin, Heidelberg.
  • Bertaglia, G., Caleffi, V., & Valiani, A. (2020). Modeling blood flow in viscoelastic vessels: The 1D augmented fluid–structure interaction system. Computer Methods in Applied Mechanics and Engineering, 360, 112772.
  • Charalambos, V., Michael, O., & Wilmer, W. N. (2012). McDonald’s blood flow in arteries: Theoretical, experimental and clinical principles (6th ed.). CRC Press.
  • Mamun, K., Akhter, M., & Ali, M. (2016). Physiological non-Newtonian blood flow through single stenosed artery. Theoretical and Applied Mechanics, 43, 99–115.
  • Gendy, M. E., Bég, O. A., Kadir, A., Islam, M. N., & Tripathi, D. (2021). Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump. Journal of Mechanics in Medicine and Biology, 21(08), 2150058.
  • Ali, N., Asghar, Z., Sajid, M., & Bég, O. A. (2020). Biological interactions between Carreau fluid and micro-swimmers in a complex wavy canal with MHD effects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 446.
  • Dubey, A., Vasu, B., Bég, O. A., & Gorla, R. S. R. (2021). Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model. Microvascular Research, 138, 104221.
  • Muhammed, R. K., Basha, H., Reddy, G. J., Shankar, U., & Bég, O. A. (2022). Influence of variable thermal conductivity and dissipation on magnetic Carreau fluid flow along a micro-cantilever sensor in a squeezing regime. Waves in Random and Complex Media, 1-30.
  • Gambaruto, A., Janela, J., Moura, A., & Sequeira, A. (2013). Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. Mathematical Biosciences and Engineering, 10, 649-667.
  • Frolov, S. V., Sindeev, S. V., Liepsch, D., & Balasso, A. (2016). Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Technology and Health Care, 24, 317-333.
  • Gijsen, F. J. H., van de Vosse, F. N., & Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. Journal of Biomechanics, 32, 601-608.
  • ANSYS. (2021). ANSYS FLUENT Theory Manual (Version 21). Lebanon, NH: ANSYS, Inc.
  • Ghigo, A. R., Wang, X. F., Armentano, R., Fullana, J. M., & Lagrée, P. Y. (2017). Linear and nonlinear viscoelastic arterial wall models: Application on animals. Journal of Biomechanical Engineering, 139(1), 011003.
Year 2024, Volume: 8 Issue: 4, 226 - 256
https://doi.org/10.26701/ems.1492905

Abstract

References

  • Papageorgiou, N. (2016). Cardiovascular diseases: Genetic susceptibility, environmental factors and their interaction. Academic Press.
  • Goldsmith, H. L., & Skalak, R. (1975). Hemodynamics. Annual Review of Fluid Mechanics, 7(1), 213-247.
  • Ku, D. N. (1997). Blood flow in arteries. Annual Review of Fluid Mechanics, 29(1), 399-434.
  • Taylor, C. A., & Figueroa, C. A. (2009). Patient-specific modelling of cardiovascular mechanics. Annual Review of Biomedical Engineering, 11, 109-134.
  • Wong, K. K., Wu, J., Liu, G., Huang, W., & Ghista, D. N. (2020). Coronary arteries hemodynamics: Effect of arterial geometry on hemodynamic parameters causing atherosclerosis. Medical & Biological Engineering & Computing, 58, 1831-1843.
  • Berger, S. A., & Jou, L.-D. (2000). Flows in stenotic vessels. Annual Review of Fluid Mechanics, 32, 347-382.
  • Dash, R. K., Jayaraman, G., & Mehta, K. N. (1999). Flow in a catheterized curved artery with stenosis. Journal of Biomechanics, 32(1), 49-61.
  • Kim, J., Jin, D., Choi, H., Kweon, J., Yang, D. H., & Kim, Y. H. (2020). A zero-dimensional predictive model for the pressure drop in the stenotic coronary artery based on its geometric characteristics. Journal of Biomechanics, 113, 110076.
  • Santamarina, A., Weydahl, E., Siegel, J. M., & Moore, J. E. (1998). Computational analysis of flow in a curved tube model of the coronary arteries: Effects of time-varying curvature. Annals of Biomedical Engineering, 26, 944-954.
  • Hoque, M. M., Alam, M. M., & Ferdows, M. (2013). Numerical simulation of Dean number and curvature effects on magneto-biofluid flow through a curved conduit. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 227(11), 1155-1170.
  • Chiang, C. H., Kao, R. H., Hung, T. K., & Bég, O. A. (2023). Computation of three-dimensional blood flow development in a 180° curved tube geometry. Journal of Mechanics in Medicine and Biology.
  • Ali, N., Javid, K., Sajid, M., & Bég, O. A. (2016). Numerical simulation of peristaltic flow of a biorheological fluid with shear-dependent viscosity in a curved channel. Computer Methods In Biomechanics and Biomedical Engineering, 19(6), 614-627.
  • Tripathi, D., Akbar, N. S., Khan, Z. H., & Bég, O. A. (2016). Peristaltic transport of bi-viscosity fluids through a curved tube: A mathematical model for intestinal flow. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(9), 817-828.
  • Narla, V. K., Tripathi, D., & Bég, O. A. (2020). Electro-osmotic nanofluid flow in a curved microchannel. Chinese Journal of Physics, 67, 544-558.
  • Khan, A. A., Akram, K., Zaman, A., & Bég, T. A. (2022). Electro-osmotic peristaltic flow and heat transfer in an ionic viscoelastic fluid through a curved micro-channel with viscous dissipation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 236(8), 1080-1092.
  • Bég, O. A., Hoque, M. M., Wahiduzzaman, M., Alam, M. M., & Ferdows, M. (2014). Spectral numerical simulation of magneto-physiological laminar dean flow. Journal of Mechanics in Medicine and Biology, 14(04), 1450047.
  • Zaman, A., Ali, N., & Bég, O. A. (2016). Unsteady magnetohydrodynamic blood flow in a porous-saturated overlapping stenotic artery—Numerical modelling. Journal of Mechanics in Medicine and Biology, 16(04), 1650049.
  • Wajihah, S. A., & Sankar, D. S. (2023). A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries. Archive of Applied Mechanics, 93(5), 1771-1796.
  • Sriyab, S. (2020). The effect of stenotic geometry and non-Newtonian property of blood flow through arterial stenosis. Cardiovascular & Haematological Disorders-Drug Targets, 20(1), 16-30.
  • Lakzian, E., & Akbarzadeh, P. (2019). Numerical investigation of unsteady pulsatile Newtonian/non-Newtonian blood flow through curved stenosed arteries. Bio-Medical Materials and Engineering, 30(5-6), 525-540.
  • Zaman, A., Ali, N., Anwar Bég, O., & Bég, T. A. (2016). Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm. Medical & Biological Engineering & Computing, 54, 1423-1436.
  • Vasu, B., Dubey, A., Bég, O. A., & Gorla, R. S. (2020). Micropolar pulsatile blood flow conveying nanoparticles in a stenotic tapered artery: Non-Newtonian pharmacodynamic simulation. Computers in Biology and Medicine, 126, 104025.
  • Tripathi, J., Vasu, B., Bég, O. A., & Gorla, R. S. R. (2021). Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery: Biomedical drug delivery simulation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(10), 1175-1196.
  • Dubey, A., Vasu, B., Bég, O. A., & Gorla, R. S. R. (2020). Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm. Computer Methods in Biomechanics and Biomedical Engineering, 23(8), 345-371.
  • Tripathi, J., Vasu, B., & Bég, O. A. (2021). Computational simulations of hybrid mediated nano-hemodynamics (Ag-Au/Blood) through an irregular symmetric stenosis. Computers in Biology and Medicine, 130, 104213.
  • Roy, A. K., & Bég, O. A. (2021). Asymptotic study of unsteady mass transfer through a rigid artery with multiple irregular stenoses. Applied Mathematics and Computation, 410, 126485.
  • Zaman, A., Ali, N., Bég, O. A., & Sajid, M. (2016). Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery. International Journal of Heat and Mass Transfer, 95, 1084-1095.
  • Zaman, A., Ali, N., Bég, O. A., & Sajid, M. (2016). Unsteady two-layered blood flow through an a-shaped stenosed artery using the generalized Oldroyd-B fluid model. The ANZIAM Journal, 58(1), 96-118.
  • Akbar, N. S., Tripathi, D., & Bég, O. A. (2017). Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery. The European Physical Journal Plus, 132, 1-11.
  • Ali, N., Zaman, A., Sajid, M., Bég, O. A., Shamshuddin, M. D., & Kadir, A. (2018). Numerical simulation of time-dependent non-Newtonian nano-pharmacodynamic transport phenomena in a tapered overlapping stenosed artery. Nanoscience and Technology: An International Journal, 9(3).
  • Bukač, M., Čanić, S., Tambača, J., & Wang, Y. (2019). Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study. Computer Methods in Applied Mechanics and Engineering, 350, 679-700.
  • Bukač, M., Čanić, S., Glowinski, R., Tambača, J., & Quaini, A. (2013). Fluid–structure interaction in blood flow capturing non-zero longitudinal structure displacement. Journal of Computational Physics, 235, 515-541.
  • Mendez, V., Di Giuseppe, M., & Pasta, S. (2018). Comparison of hemodynamic and structural indices of ascending thoracic aortic aneurysm as predicted by 2-way FSI, CFD rigid wall simulation and patient-specific displacement-based FEA. Computers in Biology and Medicine, 100, 221-229.
  • Carvalho, V., Lopes, D., Silva, J., Puga, H., Lima, R. A., Teixeira, J. C., & Teixeira, S. (2022). Comparison of CFD and FSI simulations of blood flow in stenotic coronary arteries. In S. Bhattacharyya (Ed.), Applications of Computational Fluid Dynamics Simulation and Modeling. Intech Open Publishers.
  • Luraghi, G., Wu, W., De Gaetano, F., Matas, J. F. R., Moggridge, G. D., Serrani, M., & Migliavacca, F. (2017). Evaluation of an aortic valve prosthesis: Fluid-structure interaction or structural simulation? Journal of Biomechanics, 58, 45-51.
  • Failer, L., Minakowski, P., & Richter, T. (2021). On the impact of fluid structure interaction in blood flow simulations: Stenotic coronary artery benchmark. Vietnam Journal of Mathematics, 49, 169-187.
  • Balzani, D., Heinlein, A., Klawonn, A., Rheinbach, O., & Schröder, J. (2023). Comparison of arterial wall models in fluid–structure interaction simulations. Computational Mechanics, 2, 1-7.
  • Deparis, S., Forti, D., Heinlein, A., Klawonn, A., Quarteroni, A., & Rheinbach, O. (2015). A comparison of preconditioners for the Steklov–Poincaré formulation of the fluid‐structure coupling in hemodynamics. PAMM, 15(1), 93-94.
  • Gasser, T. C., Miller, C., Polzer, S., & Roy, J. (2023). A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments. International Journal of Numerical Methods in Biomedical Engineering, 39(4), e3587.
  • Turek, S., Hron, J., Madlik, M., Razzaq, M., Wobker, H., & Acker, J. F. (2010). Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics. In H.-J. Bungartz et al. (Eds.), Fluid Structure Interaction II, Lecture Notes in Computational Science and Engineering (Vol. 73). Springer Berlin, Heidelberg.
  • Bertaglia, G., Caleffi, V., & Valiani, A. (2020). Modeling blood flow in viscoelastic vessels: The 1D augmented fluid–structure interaction system. Computer Methods in Applied Mechanics and Engineering, 360, 112772.
  • Charalambos, V., Michael, O., & Wilmer, W. N. (2012). McDonald’s blood flow in arteries: Theoretical, experimental and clinical principles (6th ed.). CRC Press.
  • Mamun, K., Akhter, M., & Ali, M. (2016). Physiological non-Newtonian blood flow through single stenosed artery. Theoretical and Applied Mechanics, 43, 99–115.
  • Gendy, M. E., Bég, O. A., Kadir, A., Islam, M. N., & Tripathi, D. (2021). Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump. Journal of Mechanics in Medicine and Biology, 21(08), 2150058.
  • Ali, N., Asghar, Z., Sajid, M., & Bég, O. A. (2020). Biological interactions between Carreau fluid and micro-swimmers in a complex wavy canal with MHD effects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 446.
  • Dubey, A., Vasu, B., Bég, O. A., & Gorla, R. S. R. (2021). Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model. Microvascular Research, 138, 104221.
  • Muhammed, R. K., Basha, H., Reddy, G. J., Shankar, U., & Bég, O. A. (2022). Influence of variable thermal conductivity and dissipation on magnetic Carreau fluid flow along a micro-cantilever sensor in a squeezing regime. Waves in Random and Complex Media, 1-30.
  • Gambaruto, A., Janela, J., Moura, A., & Sequeira, A. (2013). Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. Mathematical Biosciences and Engineering, 10, 649-667.
  • Frolov, S. V., Sindeev, S. V., Liepsch, D., & Balasso, A. (2016). Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Technology and Health Care, 24, 317-333.
  • Gijsen, F. J. H., van de Vosse, F. N., & Janssen, J. D. (1999). The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model. Journal of Biomechanics, 32, 601-608.
  • ANSYS. (2021). ANSYS FLUENT Theory Manual (Version 21). Lebanon, NH: ANSYS, Inc.
  • Ghigo, A. R., Wang, X. F., Armentano, R., Fullana, J. M., & Lagrée, P. Y. (2017). Linear and nonlinear viscoelastic arterial wall models: Application on animals. Journal of Biomechanical Engineering, 139(1), 011003.
There are 52 citations in total.

Details

Primary Language English
Subjects Biomechanical Engineering
Journal Section Research Article
Authors

Sireetorn Kuharat 0009-0000-5739-9137

M. A. Chaudhry This is me 0000-0001-7611-9356

O. Anwar Beg 0000-0001-5925-6711

Tasveer A. Bég This is me 0009-0004-1023-8255

Early Pub Date October 13, 2024
Publication Date
Submission Date May 31, 2024
Acceptance Date September 30, 2024
Published in Issue Year 2024 Volume: 8 Issue: 4

Cite

APA Kuharat, S., Chaudhry, M. A., Beg, O. A., Bég, T. A. (2024). Computational hemodynamic simulation of non-Newtonian fluid-structure interaction in a curved stenotic artery. European Mechanical Science, 8(4), 226-256. https://doi.org/10.26701/ems.1492905

Dergi TR Dizin'de Taranmaktadır.

Flag Counter