Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 1, 66 - 77, 20.03.2025
https://doi.org/10.26701/ems.1620000

Abstract

References

  • Eriksson, M., & Jacobson, S. (2000). Tribological surfaces of organic brake pads. Tribology International, 33(12), 817-827. https://doi.org/10.1016/S0301-679X(00)00127-4
  • Olabisi, A. I., Adam, A. N., & Okechukwu, O. M. (2016). Development and assessment of composite brake pad using pulverized cocoa beans shells filler. International Journal of Materials Science and Applications, 5(2), 66-78. https://doi.org/10.11648/j.ijmsa.20160502.16
  • Tok, A., & Ateş, S. (2023). Al6061 matrisli hibrit kompozitlerin sertlik ve çekme dayanımına SiC Al2O3 ve yumurta kabuğu tozu takviyesinin etkilerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23(6), 1307-1317. https://doi.org/10.35414/akufemubid.1277913
  • Kocaman, R., & Ateş, S. (2023). Al6061 matrisli SiC Al2O3 ve kömür cürufu tozu takviyeli hibrit kompozitlerin sertlik ve aşınma davranışlarının incelenmesi. International Journal of Engineering Research and Development, 15(2), 598-609. https://doi.org/10.29137/umagd.1287314
  • Abutu, J., Lawal, S. A., Ndaliman, M. B., Lafia-Araga, R. A., Adedipe, O., & Choudhury, I. A. (2018). Effects of process parameters on the properties of brake pad developed from seashell as reinforcement material using grey relational analysis. Engineering Science and Technology, an International Journal, 21(4), 787-797. https://doi.org/10.1016/j.jestch.2018.05.014
  • Singh, T., & Patnaik, A. (2015). Performance assessment of lapinus-aramid based brake pad hybrid phenolic composites in friction braking. Archives of Civil and Mechanical Engineering, 15(1), 151-161. https://doi.org/10.1016/j.acme.2014.01.009
  • Ikpambese, K. K., Gundu, D. T., & Tuleun, L. T. (2016). Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads. Journal of King Saud University - Engineering Sciences, 28(1), 110-118. https://doi.org/10.1016/j.jksues.2014.02.001
  • Kumar, M., & Bijwe, J. (2010). NAO friction materials with various metal powders: Tribological evaluation on full-scale inertia dynamometer. Wear, 269(11-12), 826-837. https://doi.org/10.1016/j.wear.2010.08.011
  • Singh, T., Patnaik, A., & Chauhan, R. (2016). Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis. Materials & Design, 89, 1335-1342. https://doi.org/10.1016/j.matdes.2015.10.045
  • Hee, K. W., & Filip, P. (2005). Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings. Wear, 259(7-12), 1088-1096. https://doi.org/10.1016/j.wear.2005.02.083
  • Nagesh, S. N., Siddaraju, C., Prakash, S. V., & Ramesh, M. R. (2014). Characterization of brake pads by variation in composition of friction materials. Procedia Materials Science, 5, 295-302. https://doi.org/10.1016/j.mspro.2014.07.270
  • Martinez, A. M., & Echeberria, J. (2016). Towards a better understanding of the reaction between metal powders and the solid lubricant Sb2S3 in a low-metallic brake pad at high temperature. Wear, 348-349, 27-42. https://doi.org/10.1016/j.wear.2015.11.014
  • Naganathan, S., Razak, H. A., & Hamid, S. N. A. (2012). Properties of controlled low-strength material made using industrial waste incineration bottom ash and quarry dust. Materials & Design, 33, 56-63. https://doi.org/10.1016/j.matdes.2011.07.014
  • Dadkar, N., Tomar, B. S., & Satapathy, B. K. (2009). Evaluation of flyash-filled and aramid fibre reinforced hybrid polymer matrix composites (PMC) for friction braking applications. Materials & Design, 30(10), 4369-4376. https://doi.org/10.1016/j.matdes.2009.04.007
  • Matějka, V., Fu, Z., Kukutschová, J., Qi, S., Jiang, S., Zhang, X., ... et al. (2013). Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Materials & Design, 51, 847-853. https://doi.org/10.1016/j.matdes.2013.04.079
  • Pujari, S., & Srikiran, S. (2019). Experimental investigations on wear properties of Palm kernel reinforced composites for brake pad applications. Defence Technology, 15(2), 295-299. https://doi.org/10.1016/j.dt.2018.11.006
  • Omrani, E., Menezes, P. L., & Rohatgi, P. K. (2016). State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal, 19(2), 717-736. https://doi.org/10.1016/j.jestch.2015.10.007
  • Yawas, D. S., Aku, S. Y., & Amaren, S. G. (2016). Morphology and properties of periwinkle shell asbestos-free brake pad. Journal of King Saud University - Engineering Sciences, 28(1), 103-109. https://doi.org/10.1016/j.jksues.2013.11.002
  • Liew, K. W., & Nirmal, U. (2013). Frictional performance evaluation of newly designed brake pad materials. Materials & Design, 48, 25-33. https://doi.org/10.1016/j.matdes.2012.07.055
  • Chandra Verma, P., Menapace, L., Bonfanti, A., Ciudin, R., Gialanella, S., & Straffelini, G. (2015). Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear, 322-323, 251-258. https://doi.org/10.1016/j.wear.2014.11.019
  • Kumar, M., & Bijwe, J. (2011). Composite friction materials based on metallic fillers: Sensitivity of μ to operating variables. Tribology International, 44(2), 106-113. https://doi.org/10.1016/j.triboint.2010.09.013
  • Singh, T., Patnaik, A., Chauhan, R., & Rishiraj, A. (2017). Assessment of braking performance of lapinus–wollastonite fibre reinforced friction composite materials. Journal of King Saud University - Engineering Sciences, 29(2), 183-190. https://doi.org/10.1016/j.jksues.2015.06.002
  • Baklouti, M., Cristol, A. L., Desplanques, Y., & Elleuch, R. (2015). Impact of the glass fibers addition on tribological behavior and braking performances of organic matrix composites for brake lining. Wear, 330-331, 507-514. https://doi.org/10.1016/j.wear.2014.12.015
  • Erkmen, J., Yavuz, H. I., Kavci, E., & Sari, M. (2020). A new environmentally friendly insulating material designed from natural materials. Construction and Building Materials, 255, 119357. https://doi.org/10.1016/j.conbuildmat.2020.119357
  • Bhatt, B., Marathe, U., Kalel, N., & Bijwe, J. (2025). Efficacy of high-performance epoxy resin as a binder to replace eco-unfriendly phenolic resins in Cu-free brake pads. Tribology International, 202, 110359. https://doi.org/10.1016/j.triboint.2024.110359
  • Hamamcı, B., & Sali, M. (2020). Asbest içermeyen fren balata imalatında farklı sinterleme sıcaklığı ve süresinin tribolojik ve mekanik özelliklere etkisi. Fen Bilimleri Dergisi, 10(2), 520-531. https://doi.org/10.21597/jist.553101
  • Akıncıoğlu, G., Uygur, İ., Akıncıoğlu, S., & Öktem, H. (2021). Friction-wear performance in environmentally friendly brake composites: A comparison of two different test methods. Polymer Composites, 42(10), 4461-4477. https://doi.org/10.1002/pc.26162
  • Zhen-Yu, W., Jie, W., Feng-Hong, C., Yun-Hai, M., Singh, T., & Fekete, G. (2019). Influence of banana fiber on physicomechanical and tribological properties of phenolic based friction composites. Materials Research Express, 6(7), 075103. https://doi.org/10.1088/2053-1591/ab160a
  • Rajan, R., Tyagi, Y. K., & Singh, S. (2022). Waste and natural fiber based automotive brake composite materials: Influence of slag and coir on tribological performance. Polymer Composites, 43(3), 1508-1517. https://doi.org/10.1002/pc.26471
  • Madyan, O. A., & Fan, M. (2018). Hydrophobic clay aerogel composites through the implantation of environmentally friendly water-repellent agents. Macromolecules, 51(14), 5079-5087. https://doi.org/10.1021/acs.macromol.8b02218
  • Lithner, D., Larsson, Å., & Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409(18), 3309-3324. https://doi.org/10.1016/j.scitotenv.2011.04.038
  • Khalili, P., Tshai, K. Y., & Kong, I. (2018). Comparative thermal and physical investigation of chemically treated and untreated oil palm EFB fiber. Materials Today: Proceedings, 5(2), 3185-3192. https://doi.org/10.1016/j.matpr.2018.01.127
  • Perera, H. J., Goyal, A., & Alhassan, S. M. (2022). Morphological, structural and thermal properties of silane-treated date palm fibers. Journal of Natural Fibers, 19(16), 12144-12154. https://doi.org/10.1080/15440478.2022.2051672

Mechanical and tribological investigation of jute fiber reinforcement in organic automotive brake pads and water repellency gain in natural fiber reinforced pads

Year 2025, Volume: 9 Issue: 1, 66 - 77, 20.03.2025
https://doi.org/10.26701/ems.1620000

Abstract

Many studies have shown that the materials used in the composition of brake pads are directly related to friction, wear mechanisms and tribological behavior. Heat-resistant jute fiber is an organic fiber that can be added to the composition of brake pads that can achieve good braking. In the study, pads were produced by adding different amounts of jute fiber using phenolic resin with powder metallurgy method and the results were compared with pads without jute fiber. It was observed that adding 5% jute fiber in addition to aramid fibers used in brake pad manufacturing had positive effects on friction coefficients, friction fluctuations and wear mechanism. At the same time, water absorption values ​​of natural fibers were reduced by 30% and water repellency was provided to the pads. According to sample A, the density of JF3 decreased by 25.4% and shear strength by 39%. The hardness value is at the standard value used in the market.

References

  • Eriksson, M., & Jacobson, S. (2000). Tribological surfaces of organic brake pads. Tribology International, 33(12), 817-827. https://doi.org/10.1016/S0301-679X(00)00127-4
  • Olabisi, A. I., Adam, A. N., & Okechukwu, O. M. (2016). Development and assessment of composite brake pad using pulverized cocoa beans shells filler. International Journal of Materials Science and Applications, 5(2), 66-78. https://doi.org/10.11648/j.ijmsa.20160502.16
  • Tok, A., & Ateş, S. (2023). Al6061 matrisli hibrit kompozitlerin sertlik ve çekme dayanımına SiC Al2O3 ve yumurta kabuğu tozu takviyesinin etkilerinin incelenmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 23(6), 1307-1317. https://doi.org/10.35414/akufemubid.1277913
  • Kocaman, R., & Ateş, S. (2023). Al6061 matrisli SiC Al2O3 ve kömür cürufu tozu takviyeli hibrit kompozitlerin sertlik ve aşınma davranışlarının incelenmesi. International Journal of Engineering Research and Development, 15(2), 598-609. https://doi.org/10.29137/umagd.1287314
  • Abutu, J., Lawal, S. A., Ndaliman, M. B., Lafia-Araga, R. A., Adedipe, O., & Choudhury, I. A. (2018). Effects of process parameters on the properties of brake pad developed from seashell as reinforcement material using grey relational analysis. Engineering Science and Technology, an International Journal, 21(4), 787-797. https://doi.org/10.1016/j.jestch.2018.05.014
  • Singh, T., & Patnaik, A. (2015). Performance assessment of lapinus-aramid based brake pad hybrid phenolic composites in friction braking. Archives of Civil and Mechanical Engineering, 15(1), 151-161. https://doi.org/10.1016/j.acme.2014.01.009
  • Ikpambese, K. K., Gundu, D. T., & Tuleun, L. T. (2016). Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads. Journal of King Saud University - Engineering Sciences, 28(1), 110-118. https://doi.org/10.1016/j.jksues.2014.02.001
  • Kumar, M., & Bijwe, J. (2010). NAO friction materials with various metal powders: Tribological evaluation on full-scale inertia dynamometer. Wear, 269(11-12), 826-837. https://doi.org/10.1016/j.wear.2010.08.011
  • Singh, T., Patnaik, A., & Chauhan, R. (2016). Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis. Materials & Design, 89, 1335-1342. https://doi.org/10.1016/j.matdes.2015.10.045
  • Hee, K. W., & Filip, P. (2005). Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings. Wear, 259(7-12), 1088-1096. https://doi.org/10.1016/j.wear.2005.02.083
  • Nagesh, S. N., Siddaraju, C., Prakash, S. V., & Ramesh, M. R. (2014). Characterization of brake pads by variation in composition of friction materials. Procedia Materials Science, 5, 295-302. https://doi.org/10.1016/j.mspro.2014.07.270
  • Martinez, A. M., & Echeberria, J. (2016). Towards a better understanding of the reaction between metal powders and the solid lubricant Sb2S3 in a low-metallic brake pad at high temperature. Wear, 348-349, 27-42. https://doi.org/10.1016/j.wear.2015.11.014
  • Naganathan, S., Razak, H. A., & Hamid, S. N. A. (2012). Properties of controlled low-strength material made using industrial waste incineration bottom ash and quarry dust. Materials & Design, 33, 56-63. https://doi.org/10.1016/j.matdes.2011.07.014
  • Dadkar, N., Tomar, B. S., & Satapathy, B. K. (2009). Evaluation of flyash-filled and aramid fibre reinforced hybrid polymer matrix composites (PMC) for friction braking applications. Materials & Design, 30(10), 4369-4376. https://doi.org/10.1016/j.matdes.2009.04.007
  • Matějka, V., Fu, Z., Kukutschová, J., Qi, S., Jiang, S., Zhang, X., ... et al. (2013). Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Materials & Design, 51, 847-853. https://doi.org/10.1016/j.matdes.2013.04.079
  • Pujari, S., & Srikiran, S. (2019). Experimental investigations on wear properties of Palm kernel reinforced composites for brake pad applications. Defence Technology, 15(2), 295-299. https://doi.org/10.1016/j.dt.2018.11.006
  • Omrani, E., Menezes, P. L., & Rohatgi, P. K. (2016). State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal, 19(2), 717-736. https://doi.org/10.1016/j.jestch.2015.10.007
  • Yawas, D. S., Aku, S. Y., & Amaren, S. G. (2016). Morphology and properties of periwinkle shell asbestos-free brake pad. Journal of King Saud University - Engineering Sciences, 28(1), 103-109. https://doi.org/10.1016/j.jksues.2013.11.002
  • Liew, K. W., & Nirmal, U. (2013). Frictional performance evaluation of newly designed brake pad materials. Materials & Design, 48, 25-33. https://doi.org/10.1016/j.matdes.2012.07.055
  • Chandra Verma, P., Menapace, L., Bonfanti, A., Ciudin, R., Gialanella, S., & Straffelini, G. (2015). Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear, 322-323, 251-258. https://doi.org/10.1016/j.wear.2014.11.019
  • Kumar, M., & Bijwe, J. (2011). Composite friction materials based on metallic fillers: Sensitivity of μ to operating variables. Tribology International, 44(2), 106-113. https://doi.org/10.1016/j.triboint.2010.09.013
  • Singh, T., Patnaik, A., Chauhan, R., & Rishiraj, A. (2017). Assessment of braking performance of lapinus–wollastonite fibre reinforced friction composite materials. Journal of King Saud University - Engineering Sciences, 29(2), 183-190. https://doi.org/10.1016/j.jksues.2015.06.002
  • Baklouti, M., Cristol, A. L., Desplanques, Y., & Elleuch, R. (2015). Impact of the glass fibers addition on tribological behavior and braking performances of organic matrix composites for brake lining. Wear, 330-331, 507-514. https://doi.org/10.1016/j.wear.2014.12.015
  • Erkmen, J., Yavuz, H. I., Kavci, E., & Sari, M. (2020). A new environmentally friendly insulating material designed from natural materials. Construction and Building Materials, 255, 119357. https://doi.org/10.1016/j.conbuildmat.2020.119357
  • Bhatt, B., Marathe, U., Kalel, N., & Bijwe, J. (2025). Efficacy of high-performance epoxy resin as a binder to replace eco-unfriendly phenolic resins in Cu-free brake pads. Tribology International, 202, 110359. https://doi.org/10.1016/j.triboint.2024.110359
  • Hamamcı, B., & Sali, M. (2020). Asbest içermeyen fren balata imalatında farklı sinterleme sıcaklığı ve süresinin tribolojik ve mekanik özelliklere etkisi. Fen Bilimleri Dergisi, 10(2), 520-531. https://doi.org/10.21597/jist.553101
  • Akıncıoğlu, G., Uygur, İ., Akıncıoğlu, S., & Öktem, H. (2021). Friction-wear performance in environmentally friendly brake composites: A comparison of two different test methods. Polymer Composites, 42(10), 4461-4477. https://doi.org/10.1002/pc.26162
  • Zhen-Yu, W., Jie, W., Feng-Hong, C., Yun-Hai, M., Singh, T., & Fekete, G. (2019). Influence of banana fiber on physicomechanical and tribological properties of phenolic based friction composites. Materials Research Express, 6(7), 075103. https://doi.org/10.1088/2053-1591/ab160a
  • Rajan, R., Tyagi, Y. K., & Singh, S. (2022). Waste and natural fiber based automotive brake composite materials: Influence of slag and coir on tribological performance. Polymer Composites, 43(3), 1508-1517. https://doi.org/10.1002/pc.26471
  • Madyan, O. A., & Fan, M. (2018). Hydrophobic clay aerogel composites through the implantation of environmentally friendly water-repellent agents. Macromolecules, 51(14), 5079-5087. https://doi.org/10.1021/acs.macromol.8b02218
  • Lithner, D., Larsson, Å., & Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409(18), 3309-3324. https://doi.org/10.1016/j.scitotenv.2011.04.038
  • Khalili, P., Tshai, K. Y., & Kong, I. (2018). Comparative thermal and physical investigation of chemically treated and untreated oil palm EFB fiber. Materials Today: Proceedings, 5(2), 3185-3192. https://doi.org/10.1016/j.matpr.2018.01.127
  • Perera, H. J., Goyal, A., & Alhassan, S. M. (2022). Morphological, structural and thermal properties of silane-treated date palm fibers. Journal of Natural Fibers, 19(16), 12144-12154. https://doi.org/10.1080/15440478.2022.2051672
There are 33 citations in total.

Details

Primary Language English
Subjects Automotive Engineering Materials
Journal Section Research Article
Authors

Benek Hamamcı 0000-0002-5180-6798

Merve Sali 0000-0002-0610-7584

Early Pub Date March 19, 2025
Publication Date March 20, 2025
Submission Date January 15, 2025
Acceptance Date March 13, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Hamamcı, B., & Sali, M. (2025). Mechanical and tribological investigation of jute fiber reinforcement in organic automotive brake pads and water repellency gain in natural fiber reinforced pads. European Mechanical Science, 9(1), 66-77. https://doi.org/10.26701/ems.1620000

Dergi TR Dizin'de Taranmaktadır.

Flag Counter