Review
BibTex RIS Cite

Akarlarda direnç mekanizmaları

Year 2018, , 61 - 75, 30.09.2018
https://doi.org/10.16969/entoteb.555172

Abstract

Acari,
tarımsal ve veteriner açıdan büyük ekonomik kayıplara neden olan türleri
içerisinde bulunduran önemli bir gruptur. Bu zararlıların kontrolünde en fazla
tercih edilen yöntem ise kimyasal mücadeledir. Ancak, tarımsal bir zararlı olan
Tetranychus urticae Koch başta olmak
üzere, diğer akar türlerinin hızlı direnç geliştirebilme yetenekleri, kimyasal
mücadelede başarısızlara neden olmaktadır. Dahası, T. urticae günümüzde en fazla kimyasala karşı direnç geliştiren
artropod türüdür ve bu nedenle “direnç şampiyonu” olarak anılmaktadır. Bu
başarısızlıkların önüne geçebilmek için, direnç mekanizmalarının detaylı bir
şekilde anlaşılması gerekmektedir. Bu derlemede, Acari altsınıfına ait ekonomik
öneme sahip türlerde görülen direnç mekanizmaları güncel bilgiler ışığında
açıklanmıştır. Bu sayede, akarların kimyasal mücadelesinin daha doğru ve
bilinçli yapılması, ayrıca uygun bir direnç yönetimi dizayn edilmesi
hedeflenmiştir.

References

  • Abdollahi, M., A. Ranjbar, S. Shadnia, S. Nikfar & A. Rezaie, 2004. Pesticides and oxidative stress: a review. Medical Science Monitor, 10: Ra141-147.
  • Ahn, S.J., W. Dermauw, N. Wybouw, D.G. Heckel & T. Van Leeuwen, 2014. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. Insect biochemistry and molecular biology, 50: 43-57.
  • Anzenbacher, P. & E. Anzenbacherova, 2001. Cytochromes P450 and metabolism of xenobiotics. Cellular and Molecular Life Sciences CMLS, 58(5-6), 737-747.APRD. 2018. Web Sitesi: www.pesticideresistance.org. Erişim: 08.08.2018.
  • Bajda, S., M. Riga, N. Wybouw, S. Papadaki, E. Ouranou, S.M. Fotoukkiaii, J. Vontas & T. Van Leeuwen, 2018. Fitness costs of key point mutations that underlie acaricide target‐site resistance in the two‐spotted spider mite Tetranychus urticae. Evolutionary applications, 11(9): 1540-1553.
  • Balabanidou V., L. Grigoraki & J. Vontas, 2018. Insect cuticle: a critical determinant of insecticide resistance. Current Opinion in Insect Science, 27: 68-74.
  • Barrett, R.D. & D. Schluter, 2008. Adaptation from standing genetic variation. Trends in ecology & evolution, 23(1): 38-44.
  • Bass, C. & L.M. Field, 2011. Gene amplification and insecticide resistance. Pest management science, 67(8), 886-890.
  • Buss, D.S. & A. Callaghan, 2008. Interaction of pesticides with p-glycoprotein and other ABC proteins: a survey of the possible importance to insecticide, herbicide and fungicide resistance. Pesticide Biochemistry Physiology, 90: 141-153.
  • Cassanelli, S., S. Ahmad, C. Duso, P. Tirello & A. Pozzebon, 2015. A single nucleotide polymorphism in the acetylcholinesterase gene of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) is associated with chlorpyrifos resistance. Biological Control, 90: 75-82.
  • Dean, M., A. Rzhetsky & R. Allikmets, 2001. The human ATP-binding cassette (ABC) transporter superfamily. Genome Research, 11: 1156-1166.
  • Dermauw, W. & T. Van Leeuwen, 2014. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect biochemistry and molecular biology, 45: 89-110.
  • Dermauw, W., A. Ilias, M. Riga, A. Tsagkarakou, M. Grbic, L. Tirry, T. Van Leeuwen & J. Vontas, 2012. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochemistry and Molecular Biology, 42: 455–65.
  • Dermauw, W., N. Wybouw, S. Rombauts, B. Menten, J. Vontas, M. Grbic, R.M. Clark, R. Feyereisen & T. Van Leeuwen, 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences of the United States of America, 110: 113–122
  • Dermauw, W., A. Pym, C. Bass, T. Van Leeuwen & R. Feyereisen, 2018. Does host plant adaptation lead to pesticide resistance in generalist herbivores?. Current opinion in insect science, 26, 25-33.
  • Devorshak, C. & R.M. Roe, 1998. The role of esterases in insecticide resistance. Reviews in Toxicology, 2: 501–537.
  • Enayati, A.A., H. Ranson & J. Hemingway, 2005. Insect glutathione transferases and insecticide resistance. Insect molecular biology, 14(1): 3-8.
  • Feyereisen, R., 1995. Molecular biology of insecticide resistance. Toxicological letters, 82/83: 83-90.
  • Feyereisen, R., 2005. Insect Cytochrome P450, In: Comprehensive molecular insect science – pharmacology Vol 5, Gilbert LI, Latrou K, Gill SS (eds.), Elsevier, 1-77, Oxford.
  • Feyereisen, R., 2012. Insect Molecular Biology and Biochemistry, ed Gilbert LI (Academic Press, Elsevier, London), pp 236–316.
  • Feyereisen, R., 2015. Insect P450 inhibitors and insecticides: challenges and opportunities. Pest management science, 71(6): 793-800.
  • Feyereisen, R., W. Dermauw & T. Van Leeuwen, 2015. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide biochemistry and physiology, 121: 61-77.
  • Ffrench-Constant, R.H., 2007. Which came first: insecticides or resistance?. Trends in Genetics, 23(1): 1-4.
  • Ffrench-Constant, R.H., 2013. The molecular genetics of insecticide resistance. Genetics, 194(4): 807-815.
  • Field, L.M., A.L. Devonshire & B.G. Forde, 1988. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochemical Journal, 251: 309–312.
  • Grbic, M., T. Van Leeuwen, R.M. Clark, S. Rombauts, P. Rouze, V. Grbic, E.J. Osborne, W. Dermauw, P. Cao Thi Ngoc, F. Ortego, P. Hernandez-Crespo, I. Diaz, M. Martinez, M. Navajas, E. Sucena, S. Magalhaes, L. Nagy, R.M. Pace, S. Djuranovic, G. Smagghe, M. Iga, O. Christiaens, J.A. Veenstra, J. Ewer, R. Mancilla Villalobos, J.L. Hutter, S.D. Hudson, M. Velez, S.V. Yi, J. Zeng, A. Pires-daSilva, F. Roch, M. Cazaux, M. Navarro, V. Zhurov, G. Acevedo, A. Bjelica, J.A. Fawcett, E. Bonnet, C. Martens, G. Baele, L. Wissler, A. Sanchez-Rodriguez, L. Tirry, C. Blais, K. De- meestere, S.R. Henz, T.R. Gregory, J. Mathieu, L. Verdon, L. Farinelli, J. Schmutz, E. Lindquist, R. Feyereisen & Y. Van de Peer, 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487–492.
  • Gulia-Nuss, M., A.B. Nuss, J.M. Meyer, D.E. Sonenshine, R.M. Roe, R.M. Waterhouse, D.B. Sattelle, J. de la Fuente, J.M. Ribeiro, K. Megy, J. Thimmapuram, J.R. Miller, B.P. Walenz, S. Koren, J.B. Hostetler, M. Thiagarajan, V.S. Joardar, L.I. Hannick, S. Bidwell, M.P. Hammond, S. Young, Q. Zeng, J.L. Abrudan, F.C. Almeida, N. Ayllon, K. Bhide, B.W. Bissinger, E. Bonzon-Kulichenko, S.D. Buckingham, D.R. Caffrey, M.J. Caimano, V. Croset, T. Driscoll, D. Gilbert, J.J. Gillespie, G.I. Giraldo-Calderon, J.M. Grabowski, D. Jiang, S.M. Khalil, D. Kim, K.M. Kocan, J. Koci, R.J. Kuhn, T.J. Kurtti, K. Lees, E.G. Lang, R.C. Kennedy, H. Kwon, R. Perera, Y. Qi, J.D. Radolf, J.M. Sakamoto, A. Sanchez-Gracia, M.S. Severo, N. Silverman, L. Simo, M. Tojo, C. Tornador, J.P. Van Zee, J. Vazquez, F.G. Vieira, M. Villar, A.R. Wespiser, Y. Yang, J. Zhu, P. Arensburger, P.V. Pietrantonio, S.C. Barker, R. Shao, E.M. Zdobnov, F. Hauser, C.J. Grimmelikhuijzen, Y. Park, J. Rozas, R. Benton, J.H. Pedra, D.R. Nelson, M.F. Unger, J.M. Tubio, Z. Tu, H.M. Robertson, M. Shumway, G. Sutton, J.R. Wortman, D. Lawson, S.K. Wikel, V.M. Nene, C.M. Fraser, F.H. Collins, B. Birren, K.E. Nelson, E. Caler & C.A. Hill, 2016. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature communications, 7, 10507.
  • Hawkins, N.J., C. Bass, A. Dixon & P. Neve, 2018. The evolutionary origins of pesticide resistance. Biological Reviews, 000-000.
  • Hayes, J.D. & L.I. McLellan, 1999. Glutatione and glutathione- dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Research, 4: 273–300.
  • Higgins C.F., 1992. ABC transporters e from microorganisms to man. Annual Review of Cell and Developmental Biology, 8: 67-113.
  • Higgins, C.F. & K.J. Linton, 2004. The ATP switch model for ABC transporters. Nature Structural & Molecular Biology, 11: 918-926.
  • Hotelier, T., L. Renault, X. Cousin, V. Negre, P. Marchot & A. Chatonnet, 2004. ESTHER, the database of the α/β‐hydrolase fold superfamily of proteins. Nucleic acids research, 32: D145-D147.
  • Ilias, A., J. Vontas, A. & Tsagkarakou, 2014. Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae. Insect biochemistry and molecular biology, 48: 17-28.
  • İnak, E. & S. Çobanoğlu, 2016. Akarisitler ve etki mekanizmaları. Türkiye Entomoloji Bülteni, 6(4): 371-382.
  • Kennedy, C.J. & K.B. Tierney, 2013. Xenobiotic protection/resistance mechanisms in organisms. In: Environmental Toxicology. Laws, E.A. (eds), Springer, 689-721, New York.
  • Kimchi-Sarfaty, C., J.M. Oh, I.W. Kim, Z.E. Sauna, A.M. Calcagno, S.V. Ambudkar & M.M. Gottesman, 2007. A ‘‘silent’’ polymorphism in the MDR1 gene changes substrate specificity. Science, 315: 525– 528.
  • Krantz, G.W. & D.E. Walter, 2009. A manual of acarology. 3nd ed. Lubbock. Texas Tech Univesity Press. 807pp.
  • Kwon, D.H., J.S. Im, J.J. Ahn, J.H. Lee, J.M. Clark & S.H. Lee, 2010. Acetylcholinesterase point mutations putatively associated with monocrotophos resistance in the two-spotted spider mite. Pesticide Biochemistry and Physiology, 96: 36-42.
  • Lairson, L.L., B. Henrissat, G.J. Davies & S.G. Withers, 2008. Glycosyltransferases: structures, functions, and mechanisms. Annual review of biochemistry, 77.
  • Linton, K.J. & C.F. Higgins, 2007. Structure and function of ABC transporters: the ATP switch provides flexible control. Pflügers Archiv-European Journal of Physiology, 453(5): 555-567.
  • Liu, N., M. Li, Y. Gong, F. Liu & T. Li, 2015. Cytochrome P450s–Their expression, regulation, and role in insecticide resistance. Pesticide biochemistry and physiology, 120: 77-81.
  • Mannervik, B., 1985. The isoenzymes of glutathione transferase. Advances in enzymology and related areas of molecular biology, 57: 357-417.
  • Mannervik, B. & U.H. Danielson, 1998. Glutathione transferases — structure and catalytic activity. Critical Reviews in Biochemistry and Molecular Biology, 23: 283-337.
  • Mansuy, D., 1998. The great diversity of reactions catalyzedby cytochrome P450. Comparative Biochemistry and Physiology, 121C; 5–14.
  • Merzendorfer, H., 2014. ABC transporters and their role in protecting insects from pesticides and their metabolites. In Advances in Insect Physiology (Vol. 46, pp. 1-72). Academic Press.
  • Montella, I.R., R. Schama & D. Valle, 2012. The classification of esterases: an important gene family involved in insecticide resistance-A review. Memorias do Instituto Oswaldo Cruz, 107(4): 437-449.
  • Pavlidi, N., J. Vontas & T. Van Leeuwen, 2018. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science 27: 97-102.
  • Pickett, C.B. & Lu, Y.H., 1989. Glutathione S-transferases: gene structure, regulation and biological function. Annual Review of Biochemistry, 58: 743–764.
  • Popovic, M., R. Zaja, J. Loncar & T. Smital, 2010. A novel ABC transporter: the first insight into zebrafish (Danio rerio) ABCH1. Marine Environmental Research, 69: 11-13.
  • Prapanthadara, L., J. Hemingway & A.J. Ketteran, 1993. Partial purification and characterization of glutathione S-transferase involved in DTT resistance from the mosquito Anopheles gambiae. Pesticide Biochemistry and Physiology, 47: 119–133.
  • Riga, M., S. Bajda, C. Themistokleous, S. Papadaki, M. Palzewicz, W. Dermauw, J. Vontas & T. Van Leeuwen, 2017. The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Scientific Reports, 7(1): 9202.
  • Smissaert, H.R., 1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science, 143: 129–131.
  • Snoeck, S., R. Greenhalgh, L. Tirry, R.M. Clark, T. Van Leeuwen & W. Dermauw, 2017. The effect of insecticide synergist treatment on genome-wide gene expression in a polyphagous pest. Scientific reports, 7(1): 13440.
  • Sogorb, M.A. & E. Vilanova, 2002. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroïd insecticides through hydrolysis. Toxicology Letters, 128: 215–228
  • Sood, S., A. Sharma, N. Sharma & S.S. Kanwar, 2016. Carboxylesterases: sources, characterization and broader applications. Insight Enzyme Research, 1: 1-11. Strange, R.C., M.A. Spiteri, S. Ramachandran & A.A. Fryer, 2001. Glutathione-S-transferase family of enzymes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 482(1-2), 21-26.
  • Van Leeuwen, T. & W. Dermauw, 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual review of entomology, 61: 475-498.
  • Van Leeuwen, T., S. van Pottelberge & L. Tirry, 2007. Organophosphate insecticides and acaricides antagonise bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Management Science, 63(12): 1172-1177.
  • Van Leeuwen, T., J. Vontas, A. Tsagkarakou & L. Tirry, 2009. Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In: Biorational control of arthropod pests, Ishaaya, I. and Horowitz, A. R. (eds), Springer, 347-393, Dordrecht.
  • Van Leeuwen, T., J. Vontas, A. Tsagkarakou, W. Dermauw & L. Tirry, 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect biochemistry and molecular biology, 40(8): 563-572.
  • Van Leuween, T., L. Tirry, A. Yamamoto, R. Nauen & W. Dermauw, 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology, 121: 12–21.
  • Walter, D.E. & H.C. Proctor, 1999. Mites. Ecology, Evolution and Behaviour. CAB International, 322, Wallingford, U.K.
  • Wu, K. & M.A. Hoy, 2016. The glutathione-S-transferase, cytochrome P450 and carboxyl/cholinesterase gene superfamilies in predatory mite Metaseiulus occidentalis. PloS one, 11(7); e0160009.
  • Wybouw, N., V. Zhurov, C. Martel, K.A. Bruinsma, F. Hendrickx, V. Grbic & T. Van Leeuwen, 2015. Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. Molecular Ecology, 24: 4647-4663.
  • Yorulmaz, S. & R. Ay, 2010. Akar ve böceklerde pestisitlerin detoksifikasyonunda rol oynayan enzimler. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 24(2): 137-148.

Resistance mechanisms in mites

Year 2018, , 61 - 75, 30.09.2018
https://doi.org/10.16969/entoteb.555172

Abstract

Acari
is an important group that include many economically important agricultural and
veterinary pest species. The most preferred method for manage these pests is
chemical control. However, the ability of quick resistance development of
particularly Tetranychus urticae Koch
and other Acari causes to chemical control failures in the field conditions.
Moreover, T. urticae is the most
resistant arthropod species to chemicals and called as “resistance champion”.
In order to prevent these failures, mechanism of resistance must be understood.
In this review, resistance mechanisms in economically important species that
belongs to Acari subclass have been elucidated in the light of current
researchs. In this way, it is
aimed to make chemical control of mites more accurate and conscious, and also
to design proper resistance management programs.

References

  • Abdollahi, M., A. Ranjbar, S. Shadnia, S. Nikfar & A. Rezaie, 2004. Pesticides and oxidative stress: a review. Medical Science Monitor, 10: Ra141-147.
  • Ahn, S.J., W. Dermauw, N. Wybouw, D.G. Heckel & T. Van Leeuwen, 2014. Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. Insect biochemistry and molecular biology, 50: 43-57.
  • Anzenbacher, P. & E. Anzenbacherova, 2001. Cytochromes P450 and metabolism of xenobiotics. Cellular and Molecular Life Sciences CMLS, 58(5-6), 737-747.APRD. 2018. Web Sitesi: www.pesticideresistance.org. Erişim: 08.08.2018.
  • Bajda, S., M. Riga, N. Wybouw, S. Papadaki, E. Ouranou, S.M. Fotoukkiaii, J. Vontas & T. Van Leeuwen, 2018. Fitness costs of key point mutations that underlie acaricide target‐site resistance in the two‐spotted spider mite Tetranychus urticae. Evolutionary applications, 11(9): 1540-1553.
  • Balabanidou V., L. Grigoraki & J. Vontas, 2018. Insect cuticle: a critical determinant of insecticide resistance. Current Opinion in Insect Science, 27: 68-74.
  • Barrett, R.D. & D. Schluter, 2008. Adaptation from standing genetic variation. Trends in ecology & evolution, 23(1): 38-44.
  • Bass, C. & L.M. Field, 2011. Gene amplification and insecticide resistance. Pest management science, 67(8), 886-890.
  • Buss, D.S. & A. Callaghan, 2008. Interaction of pesticides with p-glycoprotein and other ABC proteins: a survey of the possible importance to insecticide, herbicide and fungicide resistance. Pesticide Biochemistry Physiology, 90: 141-153.
  • Cassanelli, S., S. Ahmad, C. Duso, P. Tirello & A. Pozzebon, 2015. A single nucleotide polymorphism in the acetylcholinesterase gene of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae) is associated with chlorpyrifos resistance. Biological Control, 90: 75-82.
  • Dean, M., A. Rzhetsky & R. Allikmets, 2001. The human ATP-binding cassette (ABC) transporter superfamily. Genome Research, 11: 1156-1166.
  • Dermauw, W. & T. Van Leeuwen, 2014. The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. Insect biochemistry and molecular biology, 45: 89-110.
  • Dermauw, W., A. Ilias, M. Riga, A. Tsagkarakou, M. Grbic, L. Tirry, T. Van Leeuwen & J. Vontas, 2012. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochemistry and Molecular Biology, 42: 455–65.
  • Dermauw, W., N. Wybouw, S. Rombauts, B. Menten, J. Vontas, M. Grbic, R.M. Clark, R. Feyereisen & T. Van Leeuwen, 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proceedings of the National Academy of Sciences of the United States of America, 110: 113–122
  • Dermauw, W., A. Pym, C. Bass, T. Van Leeuwen & R. Feyereisen, 2018. Does host plant adaptation lead to pesticide resistance in generalist herbivores?. Current opinion in insect science, 26, 25-33.
  • Devorshak, C. & R.M. Roe, 1998. The role of esterases in insecticide resistance. Reviews in Toxicology, 2: 501–537.
  • Enayati, A.A., H. Ranson & J. Hemingway, 2005. Insect glutathione transferases and insecticide resistance. Insect molecular biology, 14(1): 3-8.
  • Feyereisen, R., 1995. Molecular biology of insecticide resistance. Toxicological letters, 82/83: 83-90.
  • Feyereisen, R., 2005. Insect Cytochrome P450, In: Comprehensive molecular insect science – pharmacology Vol 5, Gilbert LI, Latrou K, Gill SS (eds.), Elsevier, 1-77, Oxford.
  • Feyereisen, R., 2012. Insect Molecular Biology and Biochemistry, ed Gilbert LI (Academic Press, Elsevier, London), pp 236–316.
  • Feyereisen, R., 2015. Insect P450 inhibitors and insecticides: challenges and opportunities. Pest management science, 71(6): 793-800.
  • Feyereisen, R., W. Dermauw & T. Van Leeuwen, 2015. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pesticide biochemistry and physiology, 121: 61-77.
  • Ffrench-Constant, R.H., 2007. Which came first: insecticides or resistance?. Trends in Genetics, 23(1): 1-4.
  • Ffrench-Constant, R.H., 2013. The molecular genetics of insecticide resistance. Genetics, 194(4): 807-815.
  • Field, L.M., A.L. Devonshire & B.G. Forde, 1988. Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochemical Journal, 251: 309–312.
  • Grbic, M., T. Van Leeuwen, R.M. Clark, S. Rombauts, P. Rouze, V. Grbic, E.J. Osborne, W. Dermauw, P. Cao Thi Ngoc, F. Ortego, P. Hernandez-Crespo, I. Diaz, M. Martinez, M. Navajas, E. Sucena, S. Magalhaes, L. Nagy, R.M. Pace, S. Djuranovic, G. Smagghe, M. Iga, O. Christiaens, J.A. Veenstra, J. Ewer, R. Mancilla Villalobos, J.L. Hutter, S.D. Hudson, M. Velez, S.V. Yi, J. Zeng, A. Pires-daSilva, F. Roch, M. Cazaux, M. Navarro, V. Zhurov, G. Acevedo, A. Bjelica, J.A. Fawcett, E. Bonnet, C. Martens, G. Baele, L. Wissler, A. Sanchez-Rodriguez, L. Tirry, C. Blais, K. De- meestere, S.R. Henz, T.R. Gregory, J. Mathieu, L. Verdon, L. Farinelli, J. Schmutz, E. Lindquist, R. Feyereisen & Y. Van de Peer, 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487–492.
  • Gulia-Nuss, M., A.B. Nuss, J.M. Meyer, D.E. Sonenshine, R.M. Roe, R.M. Waterhouse, D.B. Sattelle, J. de la Fuente, J.M. Ribeiro, K. Megy, J. Thimmapuram, J.R. Miller, B.P. Walenz, S. Koren, J.B. Hostetler, M. Thiagarajan, V.S. Joardar, L.I. Hannick, S. Bidwell, M.P. Hammond, S. Young, Q. Zeng, J.L. Abrudan, F.C. Almeida, N. Ayllon, K. Bhide, B.W. Bissinger, E. Bonzon-Kulichenko, S.D. Buckingham, D.R. Caffrey, M.J. Caimano, V. Croset, T. Driscoll, D. Gilbert, J.J. Gillespie, G.I. Giraldo-Calderon, J.M. Grabowski, D. Jiang, S.M. Khalil, D. Kim, K.M. Kocan, J. Koci, R.J. Kuhn, T.J. Kurtti, K. Lees, E.G. Lang, R.C. Kennedy, H. Kwon, R. Perera, Y. Qi, J.D. Radolf, J.M. Sakamoto, A. Sanchez-Gracia, M.S. Severo, N. Silverman, L. Simo, M. Tojo, C. Tornador, J.P. Van Zee, J. Vazquez, F.G. Vieira, M. Villar, A.R. Wespiser, Y. Yang, J. Zhu, P. Arensburger, P.V. Pietrantonio, S.C. Barker, R. Shao, E.M. Zdobnov, F. Hauser, C.J. Grimmelikhuijzen, Y. Park, J. Rozas, R. Benton, J.H. Pedra, D.R. Nelson, M.F. Unger, J.M. Tubio, Z. Tu, H.M. Robertson, M. Shumway, G. Sutton, J.R. Wortman, D. Lawson, S.K. Wikel, V.M. Nene, C.M. Fraser, F.H. Collins, B. Birren, K.E. Nelson, E. Caler & C.A. Hill, 2016. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature communications, 7, 10507.
  • Hawkins, N.J., C. Bass, A. Dixon & P. Neve, 2018. The evolutionary origins of pesticide resistance. Biological Reviews, 000-000.
  • Hayes, J.D. & L.I. McLellan, 1999. Glutatione and glutathione- dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Research, 4: 273–300.
  • Higgins C.F., 1992. ABC transporters e from microorganisms to man. Annual Review of Cell and Developmental Biology, 8: 67-113.
  • Higgins, C.F. & K.J. Linton, 2004. The ATP switch model for ABC transporters. Nature Structural & Molecular Biology, 11: 918-926.
  • Hotelier, T., L. Renault, X. Cousin, V. Negre, P. Marchot & A. Chatonnet, 2004. ESTHER, the database of the α/β‐hydrolase fold superfamily of proteins. Nucleic acids research, 32: D145-D147.
  • Ilias, A., J. Vontas, A. & Tsagkarakou, 2014. Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae. Insect biochemistry and molecular biology, 48: 17-28.
  • İnak, E. & S. Çobanoğlu, 2016. Akarisitler ve etki mekanizmaları. Türkiye Entomoloji Bülteni, 6(4): 371-382.
  • Kennedy, C.J. & K.B. Tierney, 2013. Xenobiotic protection/resistance mechanisms in organisms. In: Environmental Toxicology. Laws, E.A. (eds), Springer, 689-721, New York.
  • Kimchi-Sarfaty, C., J.M. Oh, I.W. Kim, Z.E. Sauna, A.M. Calcagno, S.V. Ambudkar & M.M. Gottesman, 2007. A ‘‘silent’’ polymorphism in the MDR1 gene changes substrate specificity. Science, 315: 525– 528.
  • Krantz, G.W. & D.E. Walter, 2009. A manual of acarology. 3nd ed. Lubbock. Texas Tech Univesity Press. 807pp.
  • Kwon, D.H., J.S. Im, J.J. Ahn, J.H. Lee, J.M. Clark & S.H. Lee, 2010. Acetylcholinesterase point mutations putatively associated with monocrotophos resistance in the two-spotted spider mite. Pesticide Biochemistry and Physiology, 96: 36-42.
  • Lairson, L.L., B. Henrissat, G.J. Davies & S.G. Withers, 2008. Glycosyltransferases: structures, functions, and mechanisms. Annual review of biochemistry, 77.
  • Linton, K.J. & C.F. Higgins, 2007. Structure and function of ABC transporters: the ATP switch provides flexible control. Pflügers Archiv-European Journal of Physiology, 453(5): 555-567.
  • Liu, N., M. Li, Y. Gong, F. Liu & T. Li, 2015. Cytochrome P450s–Their expression, regulation, and role in insecticide resistance. Pesticide biochemistry and physiology, 120: 77-81.
  • Mannervik, B., 1985. The isoenzymes of glutathione transferase. Advances in enzymology and related areas of molecular biology, 57: 357-417.
  • Mannervik, B. & U.H. Danielson, 1998. Glutathione transferases — structure and catalytic activity. Critical Reviews in Biochemistry and Molecular Biology, 23: 283-337.
  • Mansuy, D., 1998. The great diversity of reactions catalyzedby cytochrome P450. Comparative Biochemistry and Physiology, 121C; 5–14.
  • Merzendorfer, H., 2014. ABC transporters and their role in protecting insects from pesticides and their metabolites. In Advances in Insect Physiology (Vol. 46, pp. 1-72). Academic Press.
  • Montella, I.R., R. Schama & D. Valle, 2012. The classification of esterases: an important gene family involved in insecticide resistance-A review. Memorias do Instituto Oswaldo Cruz, 107(4): 437-449.
  • Pavlidi, N., J. Vontas & T. Van Leeuwen, 2018. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Current Opinion in Insect Science 27: 97-102.
  • Pickett, C.B. & Lu, Y.H., 1989. Glutathione S-transferases: gene structure, regulation and biological function. Annual Review of Biochemistry, 58: 743–764.
  • Popovic, M., R. Zaja, J. Loncar & T. Smital, 2010. A novel ABC transporter: the first insight into zebrafish (Danio rerio) ABCH1. Marine Environmental Research, 69: 11-13.
  • Prapanthadara, L., J. Hemingway & A.J. Ketteran, 1993. Partial purification and characterization of glutathione S-transferase involved in DTT resistance from the mosquito Anopheles gambiae. Pesticide Biochemistry and Physiology, 47: 119–133.
  • Riga, M., S. Bajda, C. Themistokleous, S. Papadaki, M. Palzewicz, W. Dermauw, J. Vontas & T. Van Leeuwen, 2017. The relative contribution of target-site mutations in complex acaricide resistant phenotypes as assessed by marker assisted backcrossing in Tetranychus urticae. Scientific Reports, 7(1): 9202.
  • Smissaert, H.R., 1964. Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate. Science, 143: 129–131.
  • Snoeck, S., R. Greenhalgh, L. Tirry, R.M. Clark, T. Van Leeuwen & W. Dermauw, 2017. The effect of insecticide synergist treatment on genome-wide gene expression in a polyphagous pest. Scientific reports, 7(1): 13440.
  • Sogorb, M.A. & E. Vilanova, 2002. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroïd insecticides through hydrolysis. Toxicology Letters, 128: 215–228
  • Sood, S., A. Sharma, N. Sharma & S.S. Kanwar, 2016. Carboxylesterases: sources, characterization and broader applications. Insight Enzyme Research, 1: 1-11. Strange, R.C., M.A. Spiteri, S. Ramachandran & A.A. Fryer, 2001. Glutathione-S-transferase family of enzymes. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 482(1-2), 21-26.
  • Van Leeuwen, T. & W. Dermauw, 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual review of entomology, 61: 475-498.
  • Van Leeuwen, T., S. van Pottelberge & L. Tirry, 2007. Organophosphate insecticides and acaricides antagonise bifenazate toxicity through esterase inhibition in Tetranychus urticae. Pest Management Science, 63(12): 1172-1177.
  • Van Leeuwen, T., J. Vontas, A. Tsagkarakou & L. Tirry, 2009. Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In: Biorational control of arthropod pests, Ishaaya, I. and Horowitz, A. R. (eds), Springer, 347-393, Dordrecht.
  • Van Leeuwen, T., J. Vontas, A. Tsagkarakou, W. Dermauw & L. Tirry, 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect biochemistry and molecular biology, 40(8): 563-572.
  • Van Leuween, T., L. Tirry, A. Yamamoto, R. Nauen & W. Dermauw, 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology, 121: 12–21.
  • Walter, D.E. & H.C. Proctor, 1999. Mites. Ecology, Evolution and Behaviour. CAB International, 322, Wallingford, U.K.
  • Wu, K. & M.A. Hoy, 2016. The glutathione-S-transferase, cytochrome P450 and carboxyl/cholinesterase gene superfamilies in predatory mite Metaseiulus occidentalis. PloS one, 11(7); e0160009.
  • Wybouw, N., V. Zhurov, C. Martel, K.A. Bruinsma, F. Hendrickx, V. Grbic & T. Van Leeuwen, 2015. Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. Molecular Ecology, 24: 4647-4663.
  • Yorulmaz, S. & R. Ay, 2010. Akar ve böceklerde pestisitlerin detoksifikasyonunda rol oynayan enzimler. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 24(2): 137-148.
There are 63 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Emre İnak 0000-0003-0411-4198

Sultan Cobanoğlu 0000-0002-3470-1548

Publication Date September 30, 2018
Published in Issue Year 2018

Cite

APA İnak, E., & Cobanoğlu, S. (2018). Akarlarda direnç mekanizmaları. Türkiye Entomoloji Bülteni, 8(3), 61-75. https://doi.org/10.16969/entoteb.555172
AMA İnak E, Cobanoğlu S. Akarlarda direnç mekanizmaları. Türkiye Entomoloji Bülteni. September 2018;8(3):61-75. doi:10.16969/entoteb.555172
Chicago İnak, Emre, and Sultan Cobanoğlu. “Akarlarda Direnç Mekanizmaları”. Türkiye Entomoloji Bülteni 8, no. 3 (September 2018): 61-75. https://doi.org/10.16969/entoteb.555172.
EndNote İnak E, Cobanoğlu S (September 1, 2018) Akarlarda direnç mekanizmaları. Türkiye Entomoloji Bülteni 8 3 61–75.
IEEE E. İnak and S. Cobanoğlu, “Akarlarda direnç mekanizmaları”, Türkiye Entomoloji Bülteni, vol. 8, no. 3, pp. 61–75, 2018, doi: 10.16969/entoteb.555172.
ISNAD İnak, Emre - Cobanoğlu, Sultan. “Akarlarda Direnç Mekanizmaları”. Türkiye Entomoloji Bülteni 8/3 (September 2018), 61-75. https://doi.org/10.16969/entoteb.555172.
JAMA İnak E, Cobanoğlu S. Akarlarda direnç mekanizmaları. Türkiye Entomoloji Bülteni. 2018;8:61–75.
MLA İnak, Emre and Sultan Cobanoğlu. “Akarlarda Direnç Mekanizmaları”. Türkiye Entomoloji Bülteni, vol. 8, no. 3, 2018, pp. 61-75, doi:10.16969/entoteb.555172.
Vancouver İnak E, Cobanoğlu S. Akarlarda direnç mekanizmaları. Türkiye Entomoloji Bülteni. 2018;8(3):61-75.