Research Article
BibTex RIS Cite

Effects of 24-epibrassinolide on root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in tomatoes

Year 2021, Volume: 45 Issue: 1, 13 - 22, 01.03.2021
https://doi.org/10.16970/entoted.808416

Abstract

In this study conducted in 2020, three concentrations (1, 5 and 10 µM) of 24-epibrassinolide were applied to seedlings of Lycopersicon esculentum Mill. (Solanales: Solanaceae) cv. H2274, which is susceptible to root-knot nematodes, by immersion, spray and irrigation, and its effects against root-knot nematode Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) were investigated. One-thousand second stage juveniles of M. incognita, collected from cucumber roots in a greenhouse located in Çardak, Çanakkale were inoculated on the roots of the plants. After eight weeks, stem fresh weight, stem dry weight, root diameter and longest root length values, in addition to the stem length and stem diameter measured at the beginning and end of the experiment, were recorded. 24-Epibrassinolide, applied by an immersion method, gave similar or better results than the control even in the presence of nematodes. Distilled water plus nematode application showed the highest gall index whereas 5 µM 24-epibrassinolide plus nematode application gave the lowest gall index. The lowest number of egg mass was also obtained from the same concentration of 24-epibrassinolide applied by immersion. As a result, 24-epibrassinolide showed a beneficial effect in terms of reducing the damage caused by the nematodes in tomato plants, depending on the concentration and application method.

Supporting Institution

TÜBİTAK

Project Number

119O660

Thanks

Financial support for this research was provided by TUBİTAK with 119O660 Project number. The author also would like to thank Prof. Dr. Mehmet Mendeş from Çanakkale Onsekiz Mart University, Faculty of Agriculture Department of Animal Science for his valuable help with the statistical analysis.

References

  • Ali, B., S. Hayat, S. Aiman Hasan & A. Ahmad, 2006. Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Scientia Horticulturae, 110 (3): 267-273.
  • Barker, K. R., C. C. Carter & J. N. Sasser, 1985. “An Advance Treatise on Meloidogyne, 47-77”. In: Biology and Control, Vol 1 (Eds. K. R. Barker, C. C. Carter & J. N. Sasser). North Carolina State University Graphics, 422 pp.
  • Bridge, J. & S. L. J. Page, 1980. Estimation of root-knot nematodes infestation levels using a rating chart. Tropical Pest Management, 26 (3): 296-298.
  • De Bruyne, L., M. Höfte & D. De Vleesschauwer, 2014. Connecting growth and defense: The emerging roles of brassinosteroids and gibberellins in plant innate immunity. Molecular Plant, 7 (6): 943-959.
  • De Vleesschauwer, D., G. Gheysen & M. Höfte, 2013. Hormone defense networking in rice: Tales from a different world. Trends in Plant Science, 18 (10): 555-565.
  • Ding, J., K. Shi, Y. H. Zhou & J. Q. Yu, 2009. Effects of root and foliar applications of 24-epibrassinolide on Fusarium wilt and antioxidant metabolism in cucumber roots. HortScience, 44 (5): 1340-1345.
  • Grace, T., H. C. Meher & D. Prasad, 2009. Effect of Meloidogyne incognita on growth and yield of resistant and susceptible Solanum lycopersicum Mill varieties. Annals of Plant Protection Sciences, 17 (1): 215-219.
  • Hotta, Y., T. Tanaka, L. Bingshan, Y. Takeuchi & M. Konnai, 1998. Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. Journal of Pesticide Science, 23 (1): 29-33.
  • Jasrotia, S. & P. Ohri, 2014. In vitro effect of 24-epibrassinolide on antioxidative enzymes of tomato plants during Meloidogyne incognita infection. Journal of Environmental Research and Development, 9 (1): 188-191.
  • Jasrotia, S. & P. Ohri, 2017. 24-epibrassinolide reduces stress in nematode-infected tomato (Solanum lycopersicum L.) plants cultured in vitro. In Vitro Cellular & Developmental Biology-Plant, 53 (6): 538-545.
  • Karssen, G. & M. Moens, 2006. “Root-knot Nematodes, 73-108”. In: Plant Nematology (Eds. R. N. Perry & M. Moens). Wallingford, UK CABI, 482 pp.
  • Kaur, R., P. Ohri & R. Bhardwaj, 2013. Effect of 28-homobrassinolide on susceptible and resistant cultivars of tomato after nematode inoculation. Plant Growth Regulation, 71 (3): 199-205.
  • Kaur, R., P. Ohri & R. Bhardwaj, 2014a. Elucidation of phenotypic characters in brassinosteroid treated compatible and incompatible tomato plants during nematode stress. Indian Journal of Nematology, 44 (1): 88-91.
  • Kaur, R., P. Ohri & R. Bhardwaj, 2014b. Brassinosteroid-mediated changes in root-knot nematode susceptible and resistant tomato cultivars. International Journal of Pharma and Bio Sciences, 5 (4): 1085-1093.
  • Khripach, V., V. Zhabinskii & A. D. Groot, 2000. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for XXI century. Annals of Botany, 86 (3): 441-447.
  • Khripach, V. A., V. N. Zhabinskii, R. P. Litvinovskaya, M. I. Zavadskaya, E. A. Savel’eva, I. I. Karas, A. V. Kilcchevskii & S. N. Titova, 1996. A method for protection of potato from phytophthorosis. Patent Application BY 960346.
  • Mandava, N. B., 1988. Plant growth promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology, 39 (1): 23-52.
  • Mendeş, M., 2019. “İstatistiksel Yöntemler ve Deneme Planlanması”. Kriter Yayınevi, İstanbul, 638 s.
  • Mendeş, M. & S. Yiğit, 2018. An alternative approach for multiple comparison problems when there are a large number of groups: ANOM technique. The Journal of Animal & Plant Sciences, 28 (4): 1074-1079.
  • Moens, M., R. N. Perry & J. L. Starr, 2009. “Meloidogyne species-A Diverse Group of Novel and Important Plant Parasites, 1-17”. In: Root-Knot Nematodes (Eds. R. N. Perry, M. Moens & J. L. Starr). CAB International, Wallingford, UK, 483 pp.
  • Müssig, C., G. H. Shin & T. Altmann, 2003. Brassinosteroids promote root growth in Arabidopsis. Plant Physiology, 133 (3): 1261-1271.
  • Nakashita, H., M. Yasuda, T. Nitta, T. Asami, S. Fujioka, Y. Arai, K. Sekimata, S. Takatsuto, I. Yamaguchi & S. Yoshida, 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 33 (5): 887-898.
  • Nemhauser, J. L., C. T. Mockler & J. Chory, 2004. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology, 2 (9): e258.
  • Nyczepir, A. P. & S. H. Thomas, 2009. “Current and Future Management Strategies in Intensive Crop Production Systems, 412-443”. In: Root-Knot Nematodes (Eds. R. N. Perry, M. Moens & J. L. Starr). CAB International, Wallingford, UK, 483 pp.
  • Opoku-Asiama, Y. & M. A. Yeboah, 2003. Response of tomato cultivars to different inoculums concentrations of root-knot nematode (Meloidogyne incognita, Kofoid and White, 1919). Ghana Journal of Agricultural Science, 36 (1): 87-95.
  • Pallmann, P. & L. A. Hothorn, 2016. Analysis of means: A generalized approach using R. Journal of Applied Statistics, 43 (8): 1541-1560.
  • Piedra-Buena, A., J. A. López-Pérez, M. A. Díez-Rojo, L. Robertson, I. Castro-Lizazo & A. Bello, 2011. Screening of three sweet potato (Ipomoea batatas L.) cultivars for resistance to different virulence groups of root-knot nematodes (Meloidogyne spp.) under controlled conditions. Crop Protection, 30 (2): 134-140.
  • Que, F., G. L. Wang, Z. S. Xu, F. Wang & A. S. Xiong, 2017. Transcriptional regulation of brassinosteroid accumulation during carrot development and the potential role of brassinosteroids in petiole elongation. Front Plant Science, 8 (2017): 1356.
  • Song, L. X., X. C. Xu, F. N. Wang, Y. Wang, X. J. Xia, K. Shi, Y. H. Zhou, J. Zhou & J. Q. Yu, 2017. Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving respiratory burst oxidase homolog-dependent activation of MAPKs in tomato. Plant, Cell & Environment, 41 (5): 1113-1125.
  • Trudgill, D. L. & V. C. Blok, 2001. Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annual Review of Phytopathology, 39 (1): 53-77.
  • Uzunoğlu, Ö. & Z. Gökbayrak, 2018. Influence of IAA, 28-homobrassinolide and 24-epibrassinolide on adventitious rooting in grapevine. COMU Journal of Agriculture Faculty, 6 (1): 23-30.
  • Williamson, V. M. & R. S. Hussey, 1996. Nematode pathogenesis and resistance in plants. Plant Cell, 8 (10): 1735-1745.
  • Yi, H. C., S. Joo, K. H. Nam, J. S. Lee, B. G. Kang & W. T. Kim, 1999. Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Molecular Biology, 41 (4): 443-454.

24-Epibrassinolidin domateslerde kök-ur nematodu, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) üzerine etkileri

Year 2021, Volume: 45 Issue: 1, 13 - 22, 01.03.2021
https://doi.org/10.16970/entoted.808416

Abstract

2020 yılında yürütülen bu çalışmada nematoda duyarlı olan Lycopersicon esculentum Mill. (Solanales: Solanaceae) H2274 çeşidinin fidelerine daldırma, spreyleme ve sulama şeklinde 24-epibrassinolidin üç konsantrasyonu (1, 5 ve 10 µM) uygulanmış ve kök-ur nematodu, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae)’a karşı etkileri araştırılmıştır. Meloidogyne incognita’nın Çanakkale, Çardak’ta bir seradan alınan hıyar köklerinden elde edilen ikinci dönem larvaları (J2) 1000 J2/saksı olacak şekilde bitkilerin köklerine verilmiştir. Sekiz hafta sonunda, denemenin başlangıcında ve sonunda ölçülen gövde boyu ve gövde çapına ilave olarak gövde yaş ve kuru ağırlıkları ile kök çapı ve en uzun kök uzunluğu değerleri kaydedilmiştir. Daldırma şeklinde verilen 24-epibrassinolidin nematod varlığında dahi kontrol bitkilerine yakın veya daha iyi sonuçlara neden olduğu belirlenmiştir. Saf su+nematod uygulaması en yüksek gal indeksini, 5 µM 24-epibrassinolid+nematod uygulaması ise en düşük gal indeksini göstermiştir. Aynı konsantrasyondaki 24-epibrassinolid daldırma şeklinde uygulandığında da en az yumurta paketi sayısı tespit edilmiştir. Sonuç olarak, 24-epibrassinolid nematodun zararlarını azaltma yönünden konsantrasyona ve uygulama yöntemine bağlı olarak destekleyici bir etki göstermiş olup nematodların domates bitkileri üzerindeki etkilerini hafifletmiştir.

Project Number

119O660

References

  • Ali, B., S. Hayat, S. Aiman Hasan & A. Ahmad, 2006. Effect of root applied 28-homobrassinolide on the performance of Lycopersicon esculentum. Scientia Horticulturae, 110 (3): 267-273.
  • Barker, K. R., C. C. Carter & J. N. Sasser, 1985. “An Advance Treatise on Meloidogyne, 47-77”. In: Biology and Control, Vol 1 (Eds. K. R. Barker, C. C. Carter & J. N. Sasser). North Carolina State University Graphics, 422 pp.
  • Bridge, J. & S. L. J. Page, 1980. Estimation of root-knot nematodes infestation levels using a rating chart. Tropical Pest Management, 26 (3): 296-298.
  • De Bruyne, L., M. Höfte & D. De Vleesschauwer, 2014. Connecting growth and defense: The emerging roles of brassinosteroids and gibberellins in plant innate immunity. Molecular Plant, 7 (6): 943-959.
  • De Vleesschauwer, D., G. Gheysen & M. Höfte, 2013. Hormone defense networking in rice: Tales from a different world. Trends in Plant Science, 18 (10): 555-565.
  • Ding, J., K. Shi, Y. H. Zhou & J. Q. Yu, 2009. Effects of root and foliar applications of 24-epibrassinolide on Fusarium wilt and antioxidant metabolism in cucumber roots. HortScience, 44 (5): 1340-1345.
  • Grace, T., H. C. Meher & D. Prasad, 2009. Effect of Meloidogyne incognita on growth and yield of resistant and susceptible Solanum lycopersicum Mill varieties. Annals of Plant Protection Sciences, 17 (1): 215-219.
  • Hotta, Y., T. Tanaka, L. Bingshan, Y. Takeuchi & M. Konnai, 1998. Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. Journal of Pesticide Science, 23 (1): 29-33.
  • Jasrotia, S. & P. Ohri, 2014. In vitro effect of 24-epibrassinolide on antioxidative enzymes of tomato plants during Meloidogyne incognita infection. Journal of Environmental Research and Development, 9 (1): 188-191.
  • Jasrotia, S. & P. Ohri, 2017. 24-epibrassinolide reduces stress in nematode-infected tomato (Solanum lycopersicum L.) plants cultured in vitro. In Vitro Cellular & Developmental Biology-Plant, 53 (6): 538-545.
  • Karssen, G. & M. Moens, 2006. “Root-knot Nematodes, 73-108”. In: Plant Nematology (Eds. R. N. Perry & M. Moens). Wallingford, UK CABI, 482 pp.
  • Kaur, R., P. Ohri & R. Bhardwaj, 2013. Effect of 28-homobrassinolide on susceptible and resistant cultivars of tomato after nematode inoculation. Plant Growth Regulation, 71 (3): 199-205.
  • Kaur, R., P. Ohri & R. Bhardwaj, 2014a. Elucidation of phenotypic characters in brassinosteroid treated compatible and incompatible tomato plants during nematode stress. Indian Journal of Nematology, 44 (1): 88-91.
  • Kaur, R., P. Ohri & R. Bhardwaj, 2014b. Brassinosteroid-mediated changes in root-knot nematode susceptible and resistant tomato cultivars. International Journal of Pharma and Bio Sciences, 5 (4): 1085-1093.
  • Khripach, V., V. Zhabinskii & A. D. Groot, 2000. Twenty years of brassinosteroids: Steroidal plant hormones warrant better crops for XXI century. Annals of Botany, 86 (3): 441-447.
  • Khripach, V. A., V. N. Zhabinskii, R. P. Litvinovskaya, M. I. Zavadskaya, E. A. Savel’eva, I. I. Karas, A. V. Kilcchevskii & S. N. Titova, 1996. A method for protection of potato from phytophthorosis. Patent Application BY 960346.
  • Mandava, N. B., 1988. Plant growth promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology, 39 (1): 23-52.
  • Mendeş, M., 2019. “İstatistiksel Yöntemler ve Deneme Planlanması”. Kriter Yayınevi, İstanbul, 638 s.
  • Mendeş, M. & S. Yiğit, 2018. An alternative approach for multiple comparison problems when there are a large number of groups: ANOM technique. The Journal of Animal & Plant Sciences, 28 (4): 1074-1079.
  • Moens, M., R. N. Perry & J. L. Starr, 2009. “Meloidogyne species-A Diverse Group of Novel and Important Plant Parasites, 1-17”. In: Root-Knot Nematodes (Eds. R. N. Perry, M. Moens & J. L. Starr). CAB International, Wallingford, UK, 483 pp.
  • Müssig, C., G. H. Shin & T. Altmann, 2003. Brassinosteroids promote root growth in Arabidopsis. Plant Physiology, 133 (3): 1261-1271.
  • Nakashita, H., M. Yasuda, T. Nitta, T. Asami, S. Fujioka, Y. Arai, K. Sekimata, S. Takatsuto, I. Yamaguchi & S. Yoshida, 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 33 (5): 887-898.
  • Nemhauser, J. L., C. T. Mockler & J. Chory, 2004. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology, 2 (9): e258.
  • Nyczepir, A. P. & S. H. Thomas, 2009. “Current and Future Management Strategies in Intensive Crop Production Systems, 412-443”. In: Root-Knot Nematodes (Eds. R. N. Perry, M. Moens & J. L. Starr). CAB International, Wallingford, UK, 483 pp.
  • Opoku-Asiama, Y. & M. A. Yeboah, 2003. Response of tomato cultivars to different inoculums concentrations of root-knot nematode (Meloidogyne incognita, Kofoid and White, 1919). Ghana Journal of Agricultural Science, 36 (1): 87-95.
  • Pallmann, P. & L. A. Hothorn, 2016. Analysis of means: A generalized approach using R. Journal of Applied Statistics, 43 (8): 1541-1560.
  • Piedra-Buena, A., J. A. López-Pérez, M. A. Díez-Rojo, L. Robertson, I. Castro-Lizazo & A. Bello, 2011. Screening of three sweet potato (Ipomoea batatas L.) cultivars for resistance to different virulence groups of root-knot nematodes (Meloidogyne spp.) under controlled conditions. Crop Protection, 30 (2): 134-140.
  • Que, F., G. L. Wang, Z. S. Xu, F. Wang & A. S. Xiong, 2017. Transcriptional regulation of brassinosteroid accumulation during carrot development and the potential role of brassinosteroids in petiole elongation. Front Plant Science, 8 (2017): 1356.
  • Song, L. X., X. C. Xu, F. N. Wang, Y. Wang, X. J. Xia, K. Shi, Y. H. Zhou, J. Zhou & J. Q. Yu, 2017. Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving respiratory burst oxidase homolog-dependent activation of MAPKs in tomato. Plant, Cell & Environment, 41 (5): 1113-1125.
  • Trudgill, D. L. & V. C. Blok, 2001. Apomictic, polyphagous root-knot nematodes: Exceptionally successful and damaging biotrophic root pathogens. Annual Review of Phytopathology, 39 (1): 53-77.
  • Uzunoğlu, Ö. & Z. Gökbayrak, 2018. Influence of IAA, 28-homobrassinolide and 24-epibrassinolide on adventitious rooting in grapevine. COMU Journal of Agriculture Faculty, 6 (1): 23-30.
  • Williamson, V. M. & R. S. Hussey, 1996. Nematode pathogenesis and resistance in plants. Plant Cell, 8 (10): 1735-1745.
  • Yi, H. C., S. Joo, K. H. Nam, J. S. Lee, B. G. Kang & W. T. Kim, 1999. Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Molecular Biology, 41 (4): 443-454.
There are 33 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Çiğdem Gözel 0000-0002-0742-7205

Project Number 119O660
Publication Date March 1, 2021
Submission Date October 9, 2020
Acceptance Date December 10, 2020
Published in Issue Year 2021 Volume: 45 Issue: 1

Cite

APA Gözel, Ç. (2021). Effects of 24-epibrassinolide on root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in tomatoes. Turkish Journal of Entomology, 45(1), 13-22. https://doi.org/10.16970/entoted.808416
AMA Gözel Ç. Effects of 24-epibrassinolide on root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in tomatoes. TED. March 2021;45(1):13-22. doi:10.16970/entoted.808416
Chicago Gözel, Çiğdem. “Effects of 24-Epibrassinolide on Root-Knot Nematode, Meloidogyne Incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in Tomatoes”. Turkish Journal of Entomology 45, no. 1 (March 2021): 13-22. https://doi.org/10.16970/entoted.808416.
EndNote Gözel Ç (March 1, 2021) Effects of 24-epibrassinolide on root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in tomatoes. Turkish Journal of Entomology 45 1 13–22.
IEEE Ç. Gözel, “Effects of 24-epibrassinolide on root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in tomatoes”, TED, vol. 45, no. 1, pp. 13–22, 2021, doi: 10.16970/entoted.808416.
ISNAD Gözel, Çiğdem. “Effects of 24-Epibrassinolide on Root-Knot Nematode, Meloidogyne Incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in Tomatoes”. Turkish Journal of Entomology 45/1 (March 2021), 13-22. https://doi.org/10.16970/entoted.808416.
JAMA Gözel Ç. Effects of 24-epibrassinolide on root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in tomatoes. TED. 2021;45:13–22.
MLA Gözel, Çiğdem. “Effects of 24-Epibrassinolide on Root-Knot Nematode, Meloidogyne Incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in Tomatoes”. Turkish Journal of Entomology, vol. 45, no. 1, 2021, pp. 13-22, doi:10.16970/entoted.808416.
Vancouver Gözel Ç. Effects of 24-epibrassinolide on root-knot nematode, Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) in tomatoes. TED. 2021;45(1):13-22.