Research Article
BibTex RIS Cite

Determination of insecticide residues in soils from Troia agricultural fields by the QuEChERS method

Year 2022, Volume: 46 Issue: 3, 251 - 261, 30.09.2022
https://doi.org/10.16970/entoted.1101713

Abstract

Extensive and misuse of pesticides can cause to toxicity to humans and pollution in the environment. The primary objective of this study was to determine insecticide load of agricultural soils of Troia, located in Troia National Park of Çanakkale Province (Türkiye) by the QuEChERS method. For method verification, blank soil samples were spiked at two levels of pesticides. The overall recovery was 84.8% with a relative standard deviation of 13.0% (n = 230), with the values within acceptable recovery (60-140%) and repeatability (≤20%) ranges set by SANTE. Forty-nine soil samples were collected in the study area in 2020. Thirty-six samples had insecticide residues at varying concentrations. Overall, 23 insecticide residues were detected at different frequencies. The most frequent pesticides were: chlorantraniliprole> imidacloprid> pyridaben> clothianidin> indoxacarb (in decreasing order). Mean concentration of insecticide residues in soils varied between 0.99-77.7 µg/kg. Imidacloprid residues were detected in all fields, except cabbage fields. The highest imidacloprid concentration (23.3 µg/kg) was detected in pepper fields. Imidacloprid was detected in 21 samples with a mean concentration of 6.20 µg/kg. Persistent insecticides with the long half-lives, such as chlorantraniliprole, imidacloprid, and clothianidin, were detected in almost all samples.

Supporting Institution

Çanakkale Onsekiz Mart University, the Scientific Research Coordination Unit

Project Number

FBA-2020-3228

Thanks

This study was supported by Scientific Research Projects Department of Çanakkale Onsekiz Mart University (Project number: FBA-2020-3228). Thanks are extended to technical staff of Çanakkale Food Control Directorate - Pesticide Residue Laboratory for LC-MS/MS analyses and Prof. Dr. Zeki Gökalp for help with preparation of the manuscript.

References

  • Adeyinka, G. C., B. Moodley, G. Birungi & P. Ndungu, 2019. Evaluation of organochlorinated pesticide (OCP) residues in soil, sediment and water from the Msunduzi River in South Africa. Environmental Earth Sciences, 78 (6): 1-13.
  • Amin, M., A. R. Gurmani, M. Rafique, S. U. Khan, A. Mehmood, D. Muhammad & J. H. Syed, 2021. Investigating the degradation behavior of cypermethrin (CYP) and chlorpyrifos (CPP) in peach orchard soils using organic/inorganic amendments. Saudi Journal of Biological Sciences, 28 (10): 5890-5896.
  • Anastassiades, M., S. J. Lehotay, D. Stajnbaher & F. J. Schenck, 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC international, 86 (2): 412-431.
  • Andersch, I. & J. P. E. Anderson, 1991. Influence of pesticides on nitrogen transformations in soil. Toxicological & Environmental Chemistry, 30 (3-4): 153-158.
  • Anonymous, 2021. Çanakkale Directorate of Provincial Agriculture and Forestry Data. Çanakkale Directorate of Provincial Agriculture and Forestry, 1 pp (in Turkish).
  • Anonymous, 2022. National pesticide information center; Pesticide half-life. (Web page http://npic.orst.edu/factsheets/half-life.html) (Date accessed: March 2022).
  • Balderacchi, M., M. Filippini, A. Gemitzi, B. Klöve, M. Petitta, M. Trevisan, P. Wachniew, S. Witczak & A. Gargini, 2014. Does groundwater protection in Europe require new EU-wide environmental quality standards? Frontiers in Chemistry, 2 (32):1-6.
  • Bhandari, G., P. Zomer, K. Atreya, H.G. Mol, X. Yang & V. Geissen, 2019. Pesticide residues in Nepalese vegetable and potential health risks. Environmental Research, 172: 511-521.
  • Bonmatin, J. M., E. A. Mitchell, G. Glauser, E. Lumawig-Heitzman, F. Claveria, M. B. Lexmond & F. Sánchez-Bayo, 2021. Residues of neonicotinoids in soil, water and people's hair: A case study from three agricultural regions of the Philippines. Science of the Total Environment, 757 (143822): 1-10.
  • Braschi, I., S. Blasioli, S. Lavrnić, E. Buscaroli, K. Di Prodi, D. Solimando & A. Toscano, 2022. Removal and fate of pesticides in a farm constructed wetland for agricultural drainage water treatment under Mediterranean conditions (Italy). Environmental Science and Pollution Research, 29 (5): 7283-7299.
  • Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.
  • Çılgı, T. & P. C. Jepson, 1992. The use of tracers to estimate the exposure of beneficial insects to direct pesticide spraying in cereals. Annals of Applied Biology, 121 (2): 239-247.
  • DiBartolomeis, M., S. Kegley, P. Mineau, R. Radford & K. Klein, 2019. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLOS One, 14 (8): e0220029.
  • EFSA, 2016. Peer review of the pesticide risk assessment for the active substance clothianidin in light of confirmatory data submitted. EFSA Journal, 14 (11): 1-34.
  • EU, 2020. EU-Pesticides database (Web page: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=search.pr) (Date accessed: March 2022).
  • Greenberg, A. E., L. S. Clessceri & A. D. Eaton, 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. APHA/AWWA/WPCF, Washington, 1325 pp.
  • Hathout, A. S., E. Saleh, O. Hussain, M. Amer, A.-T. Mossa, A. A. Yassen & A. S. M. Fouzy, 2022. Determination of pesticide residues in agricultural soil samples collected from Sinai and Ismailia Governorates, Egypt. Egyptian Journal of Chemistry, 65 (3): 415-425.
  • Hu, M., J. Qiu, H. Zhang, X. Fan, K. Liu, D. Zeng & H. Tan, 2018. Method development and validation of indaziflam and its five metabolites in soil, water, and fruits by modified QuEChERS and UHPLC-MS/MS. Journal of Agricultural and Food Chemistry, 66 (39):10300-10308.
  • IRAC, 2022. Mode of action classification scheme. Insecticide Resistance Action Committee (IRAC). Version 10.2 (Web page: https://irac-online.org/documents/moa-classification) (Date accessed: April 2022).
  • Karasali, H., A. Marousopoulou & K. Machera, 2016. Pesticide residue concentration in soil following conventional and low-input crop management in a Mediterranean agro-ecosystem in central Greece. Science of the Total Environment, 541: 130-142.
  • Lehotay, S. J., 2007. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulphate: collaborative study. Journal of AOAC International, 90 (2): 485-520.
  • Liu, Y., S. Li, Z. Ni, M. Qu, D. Zhong, C. Ye & T. Tang, 2016. Pesticides in persimmons. jujubes and soil from China: Residue levels. risk assessment and relationship between fruits and soils. Science of the Total Environment, 542: 620-628.
  • Nagel, T. G., 2009. The QuEChERS method-a new approach in pesticide analysis of soils. Journal of Horticulture, Forestry and Biotechnology, 13: 391.
  • Polat, B., 2021. Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology, 45 (1): 125-137.
  • Polat, B. & O. Tiryaki, 2019. Determination of some pesticide residues in conventional-grown and IPM-grown tomato by using QuEChERS method. Journal of Environmental Science and Health, Part B, 54 (2): 112-117.
  • PPDB, 2022. Pesticides Properties Data Base. (Web page: https://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm) (Date accessed: March 2022).
  • PPPDA, 2022. Plant Protection Product Database Application. (Web page: https://bku.tarim.gov.tr) (Date accessed: March 2022) (in Turkish).
  • Prado-Lu, D. & J. Leilanie, 2015. Insecticide residues in soil, water, and eggplant fruits and farmers’ health effects due to exposure to pesticides. Environmental Health and Preventive Medicine, 20 (1): 53-62.
  • Salem, S. H. E., A. E. Fatah, G. N. E. Abdel-Rahman, U. Fouzy & D. Marrez, 2021. Screening for pesticide residues in soil and crop samples in Egypt. Egyptian Journal of Chemistry, 64 (5): 2525-2532.
  • SANTE, 2020. SANTE Guidelines. Guidance document on pesticide analytical methods for risk assessment and post-approval control and monitoring Purposes SANTE/2020/12830, Rev.1. (Web page https://ec.europa.eu/food/system/files/2021-02/pesticides_mrl_guidelines_2020-12830.pdf) (Date accessed: January 2022).
  • Seagraves, M. P. & J. G. Lundgren, 2012. Effects of neonicitinoid seed treatments on soybean aphid and its natural enemies. Journal of Pest Science, 85 (1): 125-132.
  • Sun, W. Z. M., 2000. The pesticide pollution problem of food in China. Pesticides, 7 (1): 1-4.
  • Temur, C., O. Tiryaki, O. Uzun & M. Basaran, 2012. Adaptation and validation of QuEChERS method for the analysis of trifluralin in wind-eroded soil. Journal of Environmental Science and Health Part B, 47 (9): 842-850.
  • Tiryaki, O., R. Canhilal & S. Horuz, 2010. Tarım ilaçlari kullanımı ve riskleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26 (2):154-169 (in Turkish).
  • Tiryaki, O. & C. Temur, 2010. The fate of pesticide in the environment. Journal of Biological and Environmental Sciences, 4 (10): 29-38.
  • TUIK, 2021. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: January 2022) (in Turkish).
  • USEPA, 2007a. Method 8081B. Organochlorine pesticides by gas chromatography. Environmental Protection Agency, Washington, USA. (Web page https://www.epa.gov/sites/default/files/2015-12/documents/8081b.pdf) (Date accessed: June 2022).
  • USEPA, 2007b. Method 1699: Pesticides in water, soil, sediment, biosolids, and tissue by HRGC/HRMS: Environmental Protection Agency, Washington, USA EPA-821-R-08-001, 96 pp. (Web page https://www.nemi.gov/methods/method_summary/9690) (Date accessed: March 2022).
  • Vickneswaran, M., J. C. Carolan & B. White, 2021. Simultaneous determination of pesticides from soils: a comparison between QuEChERS extraction and Dutch mini-Luke extraction methods. Analytical Methods, 13 (46): 5638-5650.
  • Yıldırım, İ. & H. Özcan, 2007. Determination of pesticide residues in water and soil resources of Troia (Troy). Fresenius Environmental Bulletin, 16 (1): 63-70.
  • Zaidon, S. Z., Y. Ho, H. Hamsan, Z. Hashim, N. Saari & S. M. Praveena, 2019. Improved QuEChERS and solid phase extraction for multi-residue analysis of pesticides in paddy soil and water using ultra-high performance liquid chromatography tandem mass spectrometry. Microchemical Journal, 145: 614-621.

QuEChERS yöntemi ile Troia tarım alanları topraklarında insektisit kalıntılarının belirlenmesi

Year 2022, Volume: 46 Issue: 3, 251 - 261, 30.09.2022
https://doi.org/10.16970/entoted.1101713

Abstract

Pestisitlerin yoğun ve yanlış kullanımı, insanlar ve çevre için toksisiteye neden olabilir. Bu çalışmanın temel amacı, Troia Milli Parkı-Çanakkale İli (Türkiye) 'ndeki Troia tarım topraklarının insektisit yükününün QuEChERS metodu ile belirlenmesidir. Yöntem doğrulaması için, pestisit içermeyen toprak numuneleri pestisitler ile 2 seviyede spike edilmiştir. Yöntemin geri kazanımı, SANTE tarafından belirlenen kabul edilebilir geri kazanım (%60-140) ve tekrarlanabilirlik (≤%20) aralıkları içindeki değerler ve %13.0'lük bir RSD (n = 230) ile %84.8 bulunmuştur. 2020 yılında çalışma alanından 49 toprak örneği toplanmıştır. Bunlardan 36 adedinde farklı konsantrasyonlarda insektisit kalıntısı bulunmuştur. Topraklarda toplam 23 adet insektisit kalıntısı farklı sayıda örneklerde tespit edilmiştir. En fazla sayıda örnekte tespit edilme sırası şöyledir; chlorantraniliprole> imidacloprid> pyridaben> clothianidin> indoxacarb. Toprakta insektisit kalıntılarıları ortalama konsantrasyonları 0.99- 77.7 µg/kg arasında değişmiştir. Lahana ekili alan dışında tüm alanlarda imidacloprid kalıntısı bulunmuştur. En yüksek imidacloprid konsantrasyonu (23.30 µg/kg) biber ekili alanlarda bulunmuştur. İmidacloprid tespit edilen örnek sayısı 21 ve ortalama konsantrasyon 6.20 µg/kg olarak bulunmuştur. Chlorantraniliprole, imidacloprid ve clothianidin gibi uzun yarılanma ömrüne sahip kalıcı insektisitler neredeyse tüm örneklerde tespit edilmiştir.

Project Number

FBA-2020-3228

References

  • Adeyinka, G. C., B. Moodley, G. Birungi & P. Ndungu, 2019. Evaluation of organochlorinated pesticide (OCP) residues in soil, sediment and water from the Msunduzi River in South Africa. Environmental Earth Sciences, 78 (6): 1-13.
  • Amin, M., A. R. Gurmani, M. Rafique, S. U. Khan, A. Mehmood, D. Muhammad & J. H. Syed, 2021. Investigating the degradation behavior of cypermethrin (CYP) and chlorpyrifos (CPP) in peach orchard soils using organic/inorganic amendments. Saudi Journal of Biological Sciences, 28 (10): 5890-5896.
  • Anastassiades, M., S. J. Lehotay, D. Stajnbaher & F. J. Schenck, 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC international, 86 (2): 412-431.
  • Andersch, I. & J. P. E. Anderson, 1991. Influence of pesticides on nitrogen transformations in soil. Toxicological & Environmental Chemistry, 30 (3-4): 153-158.
  • Anonymous, 2021. Çanakkale Directorate of Provincial Agriculture and Forestry Data. Çanakkale Directorate of Provincial Agriculture and Forestry, 1 pp (in Turkish).
  • Anonymous, 2022. National pesticide information center; Pesticide half-life. (Web page http://npic.orst.edu/factsheets/half-life.html) (Date accessed: March 2022).
  • Balderacchi, M., M. Filippini, A. Gemitzi, B. Klöve, M. Petitta, M. Trevisan, P. Wachniew, S. Witczak & A. Gargini, 2014. Does groundwater protection in Europe require new EU-wide environmental quality standards? Frontiers in Chemistry, 2 (32):1-6.
  • Bhandari, G., P. Zomer, K. Atreya, H.G. Mol, X. Yang & V. Geissen, 2019. Pesticide residues in Nepalese vegetable and potential health risks. Environmental Research, 172: 511-521.
  • Bonmatin, J. M., E. A. Mitchell, G. Glauser, E. Lumawig-Heitzman, F. Claveria, M. B. Lexmond & F. Sánchez-Bayo, 2021. Residues of neonicotinoids in soil, water and people's hair: A case study from three agricultural regions of the Philippines. Science of the Total Environment, 757 (143822): 1-10.
  • Braschi, I., S. Blasioli, S. Lavrnić, E. Buscaroli, K. Di Prodi, D. Solimando & A. Toscano, 2022. Removal and fate of pesticides in a farm constructed wetland for agricultural drainage water treatment under Mediterranean conditions (Italy). Environmental Science and Pollution Research, 29 (5): 7283-7299.
  • Çatak, H. & O. Tiryaki, 2020. Insecticide residue analyses in cucumbers sampled from Çanakkale open markets. Turkish Journal of Entomology, 44 (4): 449-460.
  • Çılgı, T. & P. C. Jepson, 1992. The use of tracers to estimate the exposure of beneficial insects to direct pesticide spraying in cereals. Annals of Applied Biology, 121 (2): 239-247.
  • DiBartolomeis, M., S. Kegley, P. Mineau, R. Radford & K. Klein, 2019. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLOS One, 14 (8): e0220029.
  • EFSA, 2016. Peer review of the pesticide risk assessment for the active substance clothianidin in light of confirmatory data submitted. EFSA Journal, 14 (11): 1-34.
  • EU, 2020. EU-Pesticides database (Web page: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/mrls/?event=search.pr) (Date accessed: March 2022).
  • Greenberg, A. E., L. S. Clessceri & A. D. Eaton, 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition. APHA/AWWA/WPCF, Washington, 1325 pp.
  • Hathout, A. S., E. Saleh, O. Hussain, M. Amer, A.-T. Mossa, A. A. Yassen & A. S. M. Fouzy, 2022. Determination of pesticide residues in agricultural soil samples collected from Sinai and Ismailia Governorates, Egypt. Egyptian Journal of Chemistry, 65 (3): 415-425.
  • Hu, M., J. Qiu, H. Zhang, X. Fan, K. Liu, D. Zeng & H. Tan, 2018. Method development and validation of indaziflam and its five metabolites in soil, water, and fruits by modified QuEChERS and UHPLC-MS/MS. Journal of Agricultural and Food Chemistry, 66 (39):10300-10308.
  • IRAC, 2022. Mode of action classification scheme. Insecticide Resistance Action Committee (IRAC). Version 10.2 (Web page: https://irac-online.org/documents/moa-classification) (Date accessed: April 2022).
  • Karasali, H., A. Marousopoulou & K. Machera, 2016. Pesticide residue concentration in soil following conventional and low-input crop management in a Mediterranean agro-ecosystem in central Greece. Science of the Total Environment, 541: 130-142.
  • Lehotay, S. J., 2007. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulphate: collaborative study. Journal of AOAC International, 90 (2): 485-520.
  • Liu, Y., S. Li, Z. Ni, M. Qu, D. Zhong, C. Ye & T. Tang, 2016. Pesticides in persimmons. jujubes and soil from China: Residue levels. risk assessment and relationship between fruits and soils. Science of the Total Environment, 542: 620-628.
  • Nagel, T. G., 2009. The QuEChERS method-a new approach in pesticide analysis of soils. Journal of Horticulture, Forestry and Biotechnology, 13: 391.
  • Polat, B., 2021. Reduction of some insecticide residues from grapes with washing treatments. Turkish Journal of Entomology, 45 (1): 125-137.
  • Polat, B. & O. Tiryaki, 2019. Determination of some pesticide residues in conventional-grown and IPM-grown tomato by using QuEChERS method. Journal of Environmental Science and Health, Part B, 54 (2): 112-117.
  • PPDB, 2022. Pesticides Properties Data Base. (Web page: https://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm) (Date accessed: March 2022).
  • PPPDA, 2022. Plant Protection Product Database Application. (Web page: https://bku.tarim.gov.tr) (Date accessed: March 2022) (in Turkish).
  • Prado-Lu, D. & J. Leilanie, 2015. Insecticide residues in soil, water, and eggplant fruits and farmers’ health effects due to exposure to pesticides. Environmental Health and Preventive Medicine, 20 (1): 53-62.
  • Salem, S. H. E., A. E. Fatah, G. N. E. Abdel-Rahman, U. Fouzy & D. Marrez, 2021. Screening for pesticide residues in soil and crop samples in Egypt. Egyptian Journal of Chemistry, 64 (5): 2525-2532.
  • SANTE, 2020. SANTE Guidelines. Guidance document on pesticide analytical methods for risk assessment and post-approval control and monitoring Purposes SANTE/2020/12830, Rev.1. (Web page https://ec.europa.eu/food/system/files/2021-02/pesticides_mrl_guidelines_2020-12830.pdf) (Date accessed: January 2022).
  • Seagraves, M. P. & J. G. Lundgren, 2012. Effects of neonicitinoid seed treatments on soybean aphid and its natural enemies. Journal of Pest Science, 85 (1): 125-132.
  • Sun, W. Z. M., 2000. The pesticide pollution problem of food in China. Pesticides, 7 (1): 1-4.
  • Temur, C., O. Tiryaki, O. Uzun & M. Basaran, 2012. Adaptation and validation of QuEChERS method for the analysis of trifluralin in wind-eroded soil. Journal of Environmental Science and Health Part B, 47 (9): 842-850.
  • Tiryaki, O., R. Canhilal & S. Horuz, 2010. Tarım ilaçlari kullanımı ve riskleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26 (2):154-169 (in Turkish).
  • Tiryaki, O. & C. Temur, 2010. The fate of pesticide in the environment. Journal of Biological and Environmental Sciences, 4 (10): 29-38.
  • TUIK, 2021. Turkish Statistical Institute. (Web page: https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr) (Date accessed: January 2022) (in Turkish).
  • USEPA, 2007a. Method 8081B. Organochlorine pesticides by gas chromatography. Environmental Protection Agency, Washington, USA. (Web page https://www.epa.gov/sites/default/files/2015-12/documents/8081b.pdf) (Date accessed: June 2022).
  • USEPA, 2007b. Method 1699: Pesticides in water, soil, sediment, biosolids, and tissue by HRGC/HRMS: Environmental Protection Agency, Washington, USA EPA-821-R-08-001, 96 pp. (Web page https://www.nemi.gov/methods/method_summary/9690) (Date accessed: March 2022).
  • Vickneswaran, M., J. C. Carolan & B. White, 2021. Simultaneous determination of pesticides from soils: a comparison between QuEChERS extraction and Dutch mini-Luke extraction methods. Analytical Methods, 13 (46): 5638-5650.
  • Yıldırım, İ. & H. Özcan, 2007. Determination of pesticide residues in water and soil resources of Troia (Troy). Fresenius Environmental Bulletin, 16 (1): 63-70.
  • Zaidon, S. Z., Y. Ho, H. Hamsan, Z. Hashim, N. Saari & S. M. Praveena, 2019. Improved QuEChERS and solid phase extraction for multi-residue analysis of pesticides in paddy soil and water using ultra-high performance liquid chromatography tandem mass spectrometry. Microchemical Journal, 145: 614-621.
There are 41 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Burak Polat 0000-0001-9171-1024

Osman Tiryaki 0000-0002-7509-8423

Project Number FBA-2020-3228
Early Pub Date July 21, 2022
Publication Date September 30, 2022
Submission Date April 11, 2022
Acceptance Date July 18, 2022
Published in Issue Year 2022 Volume: 46 Issue: 3

Cite

APA Polat, B., & Tiryaki, O. (2022). Determination of insecticide residues in soils from Troia agricultural fields by the QuEChERS method. Turkish Journal of Entomology, 46(3), 251-261. https://doi.org/10.16970/entoted.1101713
AMA Polat B, Tiryaki O. Determination of insecticide residues in soils from Troia agricultural fields by the QuEChERS method. TED. September 2022;46(3):251-261. doi:10.16970/entoted.1101713
Chicago Polat, Burak, and Osman Tiryaki. “Determination of Insecticide Residues in Soils from Troia Agricultural Fields by the QuEChERS Method”. Turkish Journal of Entomology 46, no. 3 (September 2022): 251-61. https://doi.org/10.16970/entoted.1101713.
EndNote Polat B, Tiryaki O (September 1, 2022) Determination of insecticide residues in soils from Troia agricultural fields by the QuEChERS method. Turkish Journal of Entomology 46 3 251–261.
IEEE B. Polat and O. Tiryaki, “Determination of insecticide residues in soils from Troia agricultural fields by the QuEChERS method”, TED, vol. 46, no. 3, pp. 251–261, 2022, doi: 10.16970/entoted.1101713.
ISNAD Polat, Burak - Tiryaki, Osman. “Determination of Insecticide Residues in Soils from Troia Agricultural Fields by the QuEChERS Method”. Turkish Journal of Entomology 46/3 (September 2022), 251-261. https://doi.org/10.16970/entoted.1101713.
JAMA Polat B, Tiryaki O. Determination of insecticide residues in soils from Troia agricultural fields by the QuEChERS method. TED. 2022;46:251–261.
MLA Polat, Burak and Osman Tiryaki. “Determination of Insecticide Residues in Soils from Troia Agricultural Fields by the QuEChERS Method”. Turkish Journal of Entomology, vol. 46, no. 3, 2022, pp. 251-6, doi:10.16970/entoted.1101713.
Vancouver Polat B, Tiryaki O. Determination of insecticide residues in soils from Troia agricultural fields by the QuEChERS method. TED. 2022;46(3):251-6.