Research Article
BibTex RIS Cite

Yerel Polyphylla fullo (L., 1758) (Coleoptera: Scarabaeidae) larvalarından Bacillus zhangzhouensis OBB Liu et al. (Caryophanales: Bacillaceae)'nin izolasyonu, cry1 geninin PCR tabanlı tespiti ve biyolojik kontrol potansiyelinin değerlendirilmesi

Year 2025, Volume: 49 Issue: 1, 39 - 51, 14.04.2025
https://doi.org/10.16970/entoted.1613003

Abstract

Bacillus zhangzhouensis OBB Liu et al. (Caryophanales: Bacillaceae) izolatı, 2024 yılında Atatürk Üniversitesi Fen Fakültesi Biyoloji Bölümü Mikrobiyoloji Laboratuvarında Polyphylla fullo (L., 1758) (Coleoptera: Scarabaeidae) larvalarından elde edilmiştir ve cry1 geninin varlığı tanımlanmıştır. İzolatın endospor boyaması yapıldıktan sonra faz kontrast mikroskobu ve SEM analizi ile kristal protein varlığı tespit edilmiştir. PCR sonucunda sadece cry1 geninin varlığı tespit edilmiştir ve doğrulanmıştır. Kristal protein ve spor karışımı kullanılarak SDS-PAGE analizi ile Bacillus thuringiensis (Berliner, 1915) (Bacteria: Bacillaceae) ile arasındaki total protein içerikleri karşılaştırılmıştır. Bacillus zhangzhouensis OBB ̴ 250 kDa ile ̴ 80 kDa arasında bantlar gösterirken, B. thuringiensis, 70 kDa ve ̴ 45 kDa'ya karşılık gelen bantlar göstermiştir.İzolatların LC50 değerini belirlemek için probit analizi, larvaların ölüm yüzdelerini belirlemek için ise Abbott yöntemi kullanılmıştır. B.thuringiensis ve B. zhangzhouensis OBB izolatlarının spor-kristal karışımları (1000, 2000 ve 4000 ppm) dozlarında P. fullo larvalarına karşı test edilmiştir. En yüksek ölüm oranı B. zhangzhouensis OBB izolatının 4000 ppm dozunda spor-kristal karışımında belirlenmiştir.

Supporting Institution

The Scientific and Technological Research Council of Türkiye (TUBITAK)

Project Number

Z123027-1002A

Thanks

This work was funded by The Scientific and Technological Research Council of Türkiye (TUBITAK), 1002-A.

References

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2): 265-267.
  • Alper, M., H. Güneş, A. Tatlıpınar, B. Çöl, S. Civelek, C. Özkan & B. Poyraz, 2014. Distribution, occurrence of cry genes, and lepidopteran toxicity of native Bacillus thuringiensis isolated from fig tree environments in Aydin Province. Turkish Journal of Agriculture and Forestry, 38 (6): 898-907.
  • Anonymous, 2008. Zirai Mücadele Teknik Talimatları. Tarımsal Araştırmalar Genel Müdürlüğü. (Web page: http: //www. tarimorman.gov.tr) (Date Accessed: 7 February 2024) (in Turkish).
  • Baig, D. N. & S. Mehnaz, 2010. Determination and distribution of cry-type genes in halophilc Bacillus thuringiensis isolates of Arabian Sea sedimentary rocks. Microbiological Research, 165 (5): 376-383.
  • Baranek, J., A. Kaznowski, E. Konecka & S. Naimov, 2015. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests. Journal of Invertebrate Pathology, 130 (1): 72-81.
  • Ben-Dov, E., S. Boussiba & A. Zaritsky, 1995. Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology, 177 (10): 2581-2587.
  • Boonmee, K., S. N. R, Thammasittirong & A. Thammasittirong, 2019. Molecular characterization of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Thailand. 3 Biotech, 9 (4): 117 (1-11).
  • Borror, D. J., D. M. De Long & C. A. Triplehorn, 1981. An Introduction to the Study of Insects. Sounder College Publishers, New York, 838 pp.
  • Boukedi, H., S. Sellami, S. Ktari & N. Belguith-Ben Hassan, S. Tounsi & L. Abdelkefi Mesrati, 2016. Isolation and characterization of a new Bacillus thuringiensis strain with a promising toxicity against Lepidopteran pests. Microbiological Research,186 (187): 9-15.
  • Bozlağan, L., A. Ayvaz, F. Oztürk, L. Açik, M. Akbulut & S. Yilmaz, 2010. Detection of the cry1 gene in Bacillus thuringinsis isolates from agricultural fields and their bioactivity against two stored product moth larvae. Turkish Journal of Agriculture and Forestry, 34 (2): 145-154.
  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2): 248-254.
  • Bülbüloğlu, Ö., 2000. Çeşitli toprak örneklerinden izole edilen Bacillus thuringiensis’ lerin izolasyonu, karakterizasyonu ve insektisidal etkilerinin belirlenmesi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (Unpublished) Master Thesis, Trabzon, 117 s (in Turkish with abstract in English).
  • Buss, E. A., 2006. White grub biology and management. (Web page: http: //edis.ifas.ufl.edu/LH037) (Date accessed: 7 February 2024).
  • Claus, D., 1992. A standardized gram staining procedure. World Journal of Microbiology and Biotechnology, 8 (4): 451-452.
  • De Maagd, R. A., A. Bravo & N. Crickmore, 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends in Genetics, 17 (4): 193-199.
  • Erler, F. & A. O. Ates, 2015. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. Journal of Insect Science, 15 (1): 44 (1-6).
  • Finney, D. J., 1952. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press, Cambridge, England, 256 pp.
  • Hall, T., I. Biosciences & C. J. G. B. B. Carlsbad, 2011. BioEdit: an important software for molecular biology. GERF Bull Bioscience, 2 (1): 60-61.
  • Jain, D., D. Sita Sunda, S. Sanadhya, J. Dhruba Nath & S. K. Khandelwal, 2017. Molecular characterization and PCR based screening of cry genes from Bacillus thuringiensis strains. 3 Biotech, 7 (4): 1-8.
  • Kang, T. H., S. H. Han, H. Y. Weon, Y. B. Lee, N. Kim & S. H. H. C. Nam, 2012. Purification and identification of Paenibacillus sp., isolated from diseased larvae of Allomyrina dichotoma (Linnaeus, 1771) (Coleoptera: Scarabaeidae) in Insect Farms. International Journal of Industrial Entomology, 25 (2): 195-203.
  • Kati, H., K. Sezen & Z. Demirbag, 2007. Characterization of a highly pathogenic Bacillus thurinigensis strain isolated from common cockchafer, Melolontha melontha. Folia Microbiologica, 52 (2): 146-152.
  • Koul, O. & G. S. Dhaliwal, 2003. “Predators and Parasitoids: An Introduction, 1-16”. In: Predators and Parasitoids (Eds. O. Koul & G. S. Dhaliwal). CRC Press, London and New York, 208 pp.
  • Kour, D., K. L. Rana, A. N. Yadav, N. Yadav, M. Kumar, V. Kumar, P. Vyas, H. S. Dhaliwal & A. K. Saxena, 2020. Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23 (1): 101487 (1-11).
  • Kour, D., K. L. Rana, T. Kaur, B. Singh, V.S. Chauhan, A. Kumar & V. K. Gupta, 2019a. “Extremophiles for Hydrolytic Enzymes Productions: Biodiversity and Potential Biotechnological Applications, 321-372”. In: Bioprocessing for Biomolecules Production (Eds. G. Molina, V. Gupta, B. Singh & N. Gathergood). Wiley Blackwell, 506 pp.
  • Kour, D., K. L. Rana, N. Yadav, A. N. Yadav, A. Kumar, V. S. Meena & A. K. Saxena, 2019b. Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion, and Biotechnological Applications for Sustainable Agriculture, 19-65”. In: Plant Growth Promoting Rhizobacteria for Agricultural Sustainability (Eds. A. Kumar & V.S. Meena). Springer, Singapore, 314 pp.
  • Kour, D., K. L. Rana, N. Yadav, A.N. Yadav, J. Singh, A. A. Rastegari & A. K. Saxena, 2019c. Agriculturally and Industrially Important Fungi: Current Developments and Potential Biotechnological Applications, 1-64”. In: Recent Advancement in White Biotechnology Through Fungi: Volume 2: Perspective for Value-Added Products and Environments (Eds. A. N. Yadav, S. Singh, S. Mishra & A. Gupta). Springer, Cham, 504 pp.
  • Lengai, G. M. & J. W. Muthomi, 2018. Biopesticides and their role in sustainable agricultural production. Journal of Biosciences and Medicines, 6 (6): 7-41.
  • Lone, A. L., A. Malik & J. V. Padaria, 2017. Characterization of lepidopteran spesific cry1 and cry2 gene harbouring native Bacillus thuringiensis izolates toxic aganist Helicoverpa armigera. Biotechnology Reports, 15 (1): 27-32.
  • Mehtap, U., 2022. Local isolate of Bacillus thuringiensis (Berliner, 1915) (Bacteria: Bacillaceae) from Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae: Spilomelinae) includes cry1, cry3 and cry4 genes and their insecticidal activities. Turkish Journal of Entomology, 46 (2): 227-237.
  • Monnerat, R. G., A. C. Batista, P. T. de Medeiros, E. S. Martins, V. M. Melatti, L. B. Praça & C. Berry, 2007. Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biological Control, 41 (3): 291-295.
  • Nawaz, M., J. I. Mabubu & H. Hua, 2016. Current status and advancement of biopesticides: microbial and botanical pesticides. Journal of Entomology and Zoology Studies, 4 (2): 241-246.
  • Reynolds, J., R. Moyes & D. P. Breakwell, 2009. Differential staining of bacteria: endospore stain. Current Protocols in Microbiology, 15 (1): A.3J.1-A.3J.5.
  • Rosovitz, M. J., M. I. Voskuil & G. H. Chambliss, 1998. Bacillus, Topley and Wilson’s Microbiology and Microbial Infections, Systematic, Bacteriology. Oxford University Press, New York, 730 pp.
  • Saadoun, I., F. Al-Momani, M. Obeidat, M. Meqdam & A. Elbetieha, 2001. Assessment of toxic potential of local Jordanian Bacillus thuringiensis strains on Drosophila melanogaster and Culex sp. (Diptera). Journal of Applied Microbiology, 90 (6): 866-872.
  • Seiber, J. N., J. Coats, S. O. Duke & A. D. Gross, 2014. Biopesticides: state of the art and future opportunities. Journal of Agricultural and Food Chemistry, 62 (48): 11613-11619.
  • Sevim, A., E. Eryüzlü, Z. Demirbağ & S. Demir, 2012. A novel cry2Ab gene from indigenous isolate Bacillus thuringiensis subs kurstaki. Journal of Microbiology and Biotechnology, 22 (1): 133-140.
  • Sharpe, E. S., G. S. Julian & C. Crowell, 1970. Characteristics of a new strain of Bacillus popilliae sporogenic in vitro, Applied Microbiology, 19 (4): 681-688.
  • Suludere, Z., Y. Kalender, L. Çakmakçı, B. Alten, C. Ayvalı & G. Çetinkaya, 1992. Türkiye’nin çeşitli yörelerinden izole edilen bazı Bacillus sphaericus ve Bacillus thuringiensis suşlarının spor ve parasporal kristallerinin elektron mikroskobuyla incelenmesi. Journal of Agricultural Forestry ,16 (1): 1-14 (in Turkish with abstract in English).
  • Tarekegn, M. M. & M. Teferra, 2023. Isolation and molecular characterization of Bacillus thuringiensis strains obtained from different habitats in Northwest Ethiopia. Food Science and Applied Biotechnology, 6 (1): 134-142.
  • Thakur, N., S. Kaur, P. Tomar, S. Thakur & A. N. Yadav, 2020. “Microbial Biopesticides: Current Status and Advancement for Sustainable Agriculture and Environment, 243-282”. In: New and Future Developments in Microbial Biotechnology and Bioengineering (Eds. A. A. Rastegari, A. N. Yadav & N. Yadav). Elsevier, 351 pp.
  • Travers, R. S., P. A. W. Martin & C. F. Reichelderfer, 1987. Selective process for efficient isolation of soil Bacillus spp. Applied and Environmental Microbiology, 53 (6): 1263-1266.
  • Wang, J., A. Boets, J. V. Rie & G. Ren, 2003. Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. Journal of Invertebrate Pathology, 82 (1): 63-71.
  • William, G. W., M. B. Susan, A. P. Dale & J. L. David, 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173 (2): 697-703.
  • Yadav, A. N., A. A. Rastegari & N. Yadav, 2020. Microbiomes of Extreme Environments: Biodiversity and Biotechnological Applications. CRC Press, 292 pp.
  • Yu, Z., L. Gong, Q. Li, G. Huang, L. He, P. Li & A. Zheng, 2015. Diversity of insecticidal crystal protein genes of Bacillus thuringiensis isolated from soil and cloning of novel haplotypes of cry genes. Annals of Microbiology, 65 (1): 2179-2186.
  • Zhu, J., F. Tan, J. Tang, Y. Li, A. Zheng & P. Li, 2009. Characterization of insecticidal crystal protein cry gene of Bacillus thuringiensis from soil of Sichuan Basin, China and cloning of novel haplotypes cry gene. Annals of Microbiology, 59 (1): 1-8.

Isolation of Bacillus zhangzhouensis OBB Liu et al. (Caryophanales: Bacillaceae) from native Polyphylla fullo (L., 1758) (Coleoptera: Scarabaeidae) larvae, PCR-based detection of cry1 gene and evaluation of its biological control potential

Year 2025, Volume: 49 Issue: 1, 39 - 51, 14.04.2025
https://doi.org/10.16970/entoted.1613003

Abstract

Bacillus zhangzhouensis OBB Liu et al. (Caryophanales: Bacillaceae) isolate was obtained from Polyphylla fullo (L., 1758) (Coleoptera: Scarabaeidae) larvae in the Microbiology Laboratory of the Biology Department of the Faculty of Science of Atatürk University in 2024. Additionally, the presence of the cry1 gene was identified. After endospore staining of the isolate, the presence of crystal protein was detected by phase contrast microscopy and SEM analysis. As a result of PCR, only the presence of the cry1 gene was detected and confirmed. The total protein contents were compared with those of Bacillus thuringiensis (Berliner, 1915) (Bacteria: Bacillaceae) by performing SDS-PAGE analysis using a crystal protein and spore mixture. B. zhangzhouensis OBB showed bands ̴ 250 kDa and ̴ 80 kDa, while B. thuringiensis showed bands corresponding to ̴ 70 kDa and ̴ 45 kDa. Probit analysis was used to determine the LC50 value of the isolates, and the Abbott method was used to determine the mortality percentages of the larvae. Spore-crystal mixtures of B. thuringiensis and B. zhangzhouensis OBB isolates were tested against P. fullo larvae at doses of 1000, 2000, and 4000 ppm. The highest mortality rate was determined in the spore-crystal mixture of B. zhangzhouensis OBB isolate at 4000 ppm dose.

Supporting Institution

The Scientific and Technological Research Council of Türkiye (TUBITAK)

Project Number

Z123027-1002A

Thanks

This work was funded by The Scientific and Technological Research Council of Türkiye (TUBITAK), 1002-A.

References

  • Abbott, W. S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18 (2): 265-267.
  • Alper, M., H. Güneş, A. Tatlıpınar, B. Çöl, S. Civelek, C. Özkan & B. Poyraz, 2014. Distribution, occurrence of cry genes, and lepidopteran toxicity of native Bacillus thuringiensis isolated from fig tree environments in Aydin Province. Turkish Journal of Agriculture and Forestry, 38 (6): 898-907.
  • Anonymous, 2008. Zirai Mücadele Teknik Talimatları. Tarımsal Araştırmalar Genel Müdürlüğü. (Web page: http: //www. tarimorman.gov.tr) (Date Accessed: 7 February 2024) (in Turkish).
  • Baig, D. N. & S. Mehnaz, 2010. Determination and distribution of cry-type genes in halophilc Bacillus thuringiensis isolates of Arabian Sea sedimentary rocks. Microbiological Research, 165 (5): 376-383.
  • Baranek, J., A. Kaznowski, E. Konecka & S. Naimov, 2015. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests. Journal of Invertebrate Pathology, 130 (1): 72-81.
  • Ben-Dov, E., S. Boussiba & A. Zaritsky, 1995. Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology, 177 (10): 2581-2587.
  • Boonmee, K., S. N. R, Thammasittirong & A. Thammasittirong, 2019. Molecular characterization of lepidopteran-specific toxin genes in Bacillus thuringiensis strains from Thailand. 3 Biotech, 9 (4): 117 (1-11).
  • Borror, D. J., D. M. De Long & C. A. Triplehorn, 1981. An Introduction to the Study of Insects. Sounder College Publishers, New York, 838 pp.
  • Boukedi, H., S. Sellami, S. Ktari & N. Belguith-Ben Hassan, S. Tounsi & L. Abdelkefi Mesrati, 2016. Isolation and characterization of a new Bacillus thuringiensis strain with a promising toxicity against Lepidopteran pests. Microbiological Research,186 (187): 9-15.
  • Bozlağan, L., A. Ayvaz, F. Oztürk, L. Açik, M. Akbulut & S. Yilmaz, 2010. Detection of the cry1 gene in Bacillus thuringinsis isolates from agricultural fields and their bioactivity against two stored product moth larvae. Turkish Journal of Agriculture and Forestry, 34 (2): 145-154.
  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72 (1-2): 248-254.
  • Bülbüloğlu, Ö., 2000. Çeşitli toprak örneklerinden izole edilen Bacillus thuringiensis’ lerin izolasyonu, karakterizasyonu ve insektisidal etkilerinin belirlenmesi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (Unpublished) Master Thesis, Trabzon, 117 s (in Turkish with abstract in English).
  • Buss, E. A., 2006. White grub biology and management. (Web page: http: //edis.ifas.ufl.edu/LH037) (Date accessed: 7 February 2024).
  • Claus, D., 1992. A standardized gram staining procedure. World Journal of Microbiology and Biotechnology, 8 (4): 451-452.
  • De Maagd, R. A., A. Bravo & N. Crickmore, 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends in Genetics, 17 (4): 193-199.
  • Erler, F. & A. O. Ates, 2015. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. Journal of Insect Science, 15 (1): 44 (1-6).
  • Finney, D. J., 1952. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve. Cambridge University Press, Cambridge, England, 256 pp.
  • Hall, T., I. Biosciences & C. J. G. B. B. Carlsbad, 2011. BioEdit: an important software for molecular biology. GERF Bull Bioscience, 2 (1): 60-61.
  • Jain, D., D. Sita Sunda, S. Sanadhya, J. Dhruba Nath & S. K. Khandelwal, 2017. Molecular characterization and PCR based screening of cry genes from Bacillus thuringiensis strains. 3 Biotech, 7 (4): 1-8.
  • Kang, T. H., S. H. Han, H. Y. Weon, Y. B. Lee, N. Kim & S. H. H. C. Nam, 2012. Purification and identification of Paenibacillus sp., isolated from diseased larvae of Allomyrina dichotoma (Linnaeus, 1771) (Coleoptera: Scarabaeidae) in Insect Farms. International Journal of Industrial Entomology, 25 (2): 195-203.
  • Kati, H., K. Sezen & Z. Demirbag, 2007. Characterization of a highly pathogenic Bacillus thurinigensis strain isolated from common cockchafer, Melolontha melontha. Folia Microbiologica, 52 (2): 146-152.
  • Koul, O. & G. S. Dhaliwal, 2003. “Predators and Parasitoids: An Introduction, 1-16”. In: Predators and Parasitoids (Eds. O. Koul & G. S. Dhaliwal). CRC Press, London and New York, 208 pp.
  • Kour, D., K. L. Rana, A. N. Yadav, N. Yadav, M. Kumar, V. Kumar, P. Vyas, H. S. Dhaliwal & A. K. Saxena, 2020. Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23 (1): 101487 (1-11).
  • Kour, D., K. L. Rana, T. Kaur, B. Singh, V.S. Chauhan, A. Kumar & V. K. Gupta, 2019a. “Extremophiles for Hydrolytic Enzymes Productions: Biodiversity and Potential Biotechnological Applications, 321-372”. In: Bioprocessing for Biomolecules Production (Eds. G. Molina, V. Gupta, B. Singh & N. Gathergood). Wiley Blackwell, 506 pp.
  • Kour, D., K. L. Rana, N. Yadav, A. N. Yadav, A. Kumar, V. S. Meena & A. K. Saxena, 2019b. Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion, and Biotechnological Applications for Sustainable Agriculture, 19-65”. In: Plant Growth Promoting Rhizobacteria for Agricultural Sustainability (Eds. A. Kumar & V.S. Meena). Springer, Singapore, 314 pp.
  • Kour, D., K. L. Rana, N. Yadav, A.N. Yadav, J. Singh, A. A. Rastegari & A. K. Saxena, 2019c. Agriculturally and Industrially Important Fungi: Current Developments and Potential Biotechnological Applications, 1-64”. In: Recent Advancement in White Biotechnology Through Fungi: Volume 2: Perspective for Value-Added Products and Environments (Eds. A. N. Yadav, S. Singh, S. Mishra & A. Gupta). Springer, Cham, 504 pp.
  • Lengai, G. M. & J. W. Muthomi, 2018. Biopesticides and their role in sustainable agricultural production. Journal of Biosciences and Medicines, 6 (6): 7-41.
  • Lone, A. L., A. Malik & J. V. Padaria, 2017. Characterization of lepidopteran spesific cry1 and cry2 gene harbouring native Bacillus thuringiensis izolates toxic aganist Helicoverpa armigera. Biotechnology Reports, 15 (1): 27-32.
  • Mehtap, U., 2022. Local isolate of Bacillus thuringiensis (Berliner, 1915) (Bacteria: Bacillaceae) from Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae: Spilomelinae) includes cry1, cry3 and cry4 genes and their insecticidal activities. Turkish Journal of Entomology, 46 (2): 227-237.
  • Monnerat, R. G., A. C. Batista, P. T. de Medeiros, E. S. Martins, V. M. Melatti, L. B. Praça & C. Berry, 2007. Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biological Control, 41 (3): 291-295.
  • Nawaz, M., J. I. Mabubu & H. Hua, 2016. Current status and advancement of biopesticides: microbial and botanical pesticides. Journal of Entomology and Zoology Studies, 4 (2): 241-246.
  • Reynolds, J., R. Moyes & D. P. Breakwell, 2009. Differential staining of bacteria: endospore stain. Current Protocols in Microbiology, 15 (1): A.3J.1-A.3J.5.
  • Rosovitz, M. J., M. I. Voskuil & G. H. Chambliss, 1998. Bacillus, Topley and Wilson’s Microbiology and Microbial Infections, Systematic, Bacteriology. Oxford University Press, New York, 730 pp.
  • Saadoun, I., F. Al-Momani, M. Obeidat, M. Meqdam & A. Elbetieha, 2001. Assessment of toxic potential of local Jordanian Bacillus thuringiensis strains on Drosophila melanogaster and Culex sp. (Diptera). Journal of Applied Microbiology, 90 (6): 866-872.
  • Seiber, J. N., J. Coats, S. O. Duke & A. D. Gross, 2014. Biopesticides: state of the art and future opportunities. Journal of Agricultural and Food Chemistry, 62 (48): 11613-11619.
  • Sevim, A., E. Eryüzlü, Z. Demirbağ & S. Demir, 2012. A novel cry2Ab gene from indigenous isolate Bacillus thuringiensis subs kurstaki. Journal of Microbiology and Biotechnology, 22 (1): 133-140.
  • Sharpe, E. S., G. S. Julian & C. Crowell, 1970. Characteristics of a new strain of Bacillus popilliae sporogenic in vitro, Applied Microbiology, 19 (4): 681-688.
  • Suludere, Z., Y. Kalender, L. Çakmakçı, B. Alten, C. Ayvalı & G. Çetinkaya, 1992. Türkiye’nin çeşitli yörelerinden izole edilen bazı Bacillus sphaericus ve Bacillus thuringiensis suşlarının spor ve parasporal kristallerinin elektron mikroskobuyla incelenmesi. Journal of Agricultural Forestry ,16 (1): 1-14 (in Turkish with abstract in English).
  • Tarekegn, M. M. & M. Teferra, 2023. Isolation and molecular characterization of Bacillus thuringiensis strains obtained from different habitats in Northwest Ethiopia. Food Science and Applied Biotechnology, 6 (1): 134-142.
  • Thakur, N., S. Kaur, P. Tomar, S. Thakur & A. N. Yadav, 2020. “Microbial Biopesticides: Current Status and Advancement for Sustainable Agriculture and Environment, 243-282”. In: New and Future Developments in Microbial Biotechnology and Bioengineering (Eds. A. A. Rastegari, A. N. Yadav & N. Yadav). Elsevier, 351 pp.
  • Travers, R. S., P. A. W. Martin & C. F. Reichelderfer, 1987. Selective process for efficient isolation of soil Bacillus spp. Applied and Environmental Microbiology, 53 (6): 1263-1266.
  • Wang, J., A. Boets, J. V. Rie & G. Ren, 2003. Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. Journal of Invertebrate Pathology, 82 (1): 63-71.
  • William, G. W., M. B. Susan, A. P. Dale & J. L. David, 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173 (2): 697-703.
  • Yadav, A. N., A. A. Rastegari & N. Yadav, 2020. Microbiomes of Extreme Environments: Biodiversity and Biotechnological Applications. CRC Press, 292 pp.
  • Yu, Z., L. Gong, Q. Li, G. Huang, L. He, P. Li & A. Zheng, 2015. Diversity of insecticidal crystal protein genes of Bacillus thuringiensis isolated from soil and cloning of novel haplotypes of cry genes. Annals of Microbiology, 65 (1): 2179-2186.
  • Zhu, J., F. Tan, J. Tang, Y. Li, A. Zheng & P. Li, 2009. Characterization of insecticidal crystal protein cry gene of Bacillus thuringiensis from soil of Sichuan Basin, China and cloning of novel haplotypes cry gene. Annals of Microbiology, 59 (1): 1-8.
There are 46 citations in total.

Details

Primary Language English
Subjects Pesticides and Toxicology
Journal Section Articles
Authors

Özlem Bakir Boğa 0000-0002-1964-3271

Esabi Başaran Kurbanoğlu 0000-0002-7434-6309

Project Number Z123027-1002A
Early Pub Date April 10, 2025
Publication Date April 14, 2025
Submission Date January 3, 2025
Acceptance Date April 9, 2025
Published in Issue Year 2025 Volume: 49 Issue: 1

Cite

APA Bakir Boğa, Ö., & Kurbanoğlu, E. B. (2025). Isolation of Bacillus zhangzhouensis OBB Liu et al. (Caryophanales: Bacillaceae) from native Polyphylla fullo (L., 1758) (Coleoptera: Scarabaeidae) larvae, PCR-based detection of cry1 gene and evaluation of its biological control potential. Turkish Journal of Entomology, 49(1), 39-51. https://doi.org/10.16970/entoted.1613003
AMA Bakir Boğa Ö, Kurbanoğlu EB. Isolation of Bacillus zhangzhouensis OBB Liu et al. (Caryophanales: Bacillaceae) from native Polyphylla fullo (L., 1758) (Coleoptera: Scarabaeidae) larvae, PCR-based detection of cry1 gene and evaluation of its biological control potential. TED. April 2025;49(1):39-51. doi:10.16970/entoted.1613003
Chicago Bakir Boğa, Özlem, and Esabi Başaran Kurbanoğlu. “Isolation of Bacillus Zhangzhouensis OBB Liu Et Al. (Caryophanales: Bacillaceae) from Native Polyphylla Fullo (L., 1758) (Coleoptera: Scarabaeidae) Larvae, PCR-Based Detection of Cry1 Gene and Evaluation of Its Biological Control Potential”. Turkish Journal of Entomology 49, no. 1 (April 2025): 39-51. https://doi.org/10.16970/entoted.1613003.
EndNote Bakir Boğa Ö, Kurbanoğlu EB (April 1, 2025) Isolation of Bacillus zhangzhouensis OBB Liu et al. (Caryophanales: Bacillaceae) from native Polyphylla fullo (L., 1758) (Coleoptera: Scarabaeidae) larvae, PCR-based detection of cry1 gene and evaluation of its biological control potential. Turkish Journal of Entomology 49 1 39–51.
IEEE Ö. Bakir Boğa and E. B. Kurbanoğlu, “Isolation of Bacillus zhangzhouensis OBB Liu et al. (Caryophanales: Bacillaceae) from native Polyphylla fullo (L., 1758) (Coleoptera: Scarabaeidae) larvae, PCR-based detection of cry1 gene and evaluation of its biological control potential”, TED, vol. 49, no. 1, pp. 39–51, 2025, doi: 10.16970/entoted.1613003.
ISNAD Bakir Boğa, Özlem - Kurbanoğlu, Esabi Başaran. “Isolation of Bacillus Zhangzhouensis OBB Liu Et Al. (Caryophanales: Bacillaceae) from Native Polyphylla Fullo (L., 1758) (Coleoptera: Scarabaeidae) Larvae, PCR-Based Detection of Cry1 Gene and Evaluation of Its Biological Control Potential”. Turkish Journal of Entomology 49/1 (April 2025), 39-51. https://doi.org/10.16970/entoted.1613003.
JAMA Bakir Boğa Ö, Kurbanoğlu EB. Isolation of Bacillus zhangzhouensis OBB Liu et al. (Caryophanales: Bacillaceae) from native Polyphylla fullo (L., 1758) (Coleoptera: Scarabaeidae) larvae, PCR-based detection of cry1 gene and evaluation of its biological control potential. TED. 2025;49:39–51.
MLA Bakir Boğa, Özlem and Esabi Başaran Kurbanoğlu. “Isolation of Bacillus Zhangzhouensis OBB Liu Et Al. (Caryophanales: Bacillaceae) from Native Polyphylla Fullo (L., 1758) (Coleoptera: Scarabaeidae) Larvae, PCR-Based Detection of Cry1 Gene and Evaluation of Its Biological Control Potential”. Turkish Journal of Entomology, vol. 49, no. 1, 2025, pp. 39-51, doi:10.16970/entoted.1613003.
Vancouver Bakir Boğa Ö, Kurbanoğlu EB. Isolation of Bacillus zhangzhouensis OBB Liu et al. (Caryophanales: Bacillaceae) from native Polyphylla fullo (L., 1758) (Coleoptera: Scarabaeidae) larvae, PCR-based detection of cry1 gene and evaluation of its biological control potential. TED. 2025;49(1):39-51.